• Title/Summary/Keyword: moment methods

Search Result 982, Processing Time 0.028 seconds

A Study on DOA Estimation Using Dipole Array Antenna Based on MoM (MoM 기법에 의한 다이폴 배열 안테나의 신호 방향 추정 방법 연구)

  • Moon, Sang-Kon;Lee, Kang-In;Yang, Hoon-Gee;Bae, Kyung-Bin;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.661-668
    • /
    • 2011
  • Direction estimation of signal of interest has been an important issue in radar and communication system. Generally, DOA(Direction Of Arrival) methods have been researched in the field of signal processing with ideal array sensors. However, there are some problems in array antennas such as the input signal distortions in amplitude and phase, due to the mutual coupling between array elements. In this paper, we propose a new method of DOA estimation in the dipole array antenna by using the method of moment(MoM) to compensate the mutual coupling effects between array antenna elements. Also, the proposed method is applied to the estimation of azimuth(${\phi}$ ) and elevation(${\theta}$) angles using uniformly linear dipole array under noisy environments.

Evaluation of Liquefaction Triggering for the Pohang Area Based on SPT and CPT Tests (SPT와 CPT 지반조사결과에 기초한 포항지역 액상화 위험도 평가)

  • Kim, Yeon-Jun;Ko, Kil-Wan;Kim, Byung-Min;Park, Du-Hee;Kim, Ki-Seog;Han, Jin-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.57-71
    • /
    • 2020
  • Liquefaction-induced sand boils were observed during the Pohang earthquake (Moment magnitude, 5.4) on November 15, 2017, specifically in the region of agricultural fields and park areas near the epicenter. This was recorded as the first observed liquefaction phenomenon in Korea. This paper analyzes liquefaction potentials at the key sites at Pohang area. The simplified methods and current design standard were used to evaluate the occurrence of liquefaction. The seismic demand was estimated based on the NGA-WEST2 ground motion prediction equations (GMPEs). The liquefaction resistance of the ground was determined using the in-situ tests: standard penetration test (SPT) and cone penetration test (CPT). The liquefaction potentials were quantified by liquefaction potential index (LPI), which were compared with those from the previous studies.

Applied element method simulation of experimental failure modes in RC shear walls

  • Cismasiu, Corneliu;Ramos, Antonio Pinho;Moldovan, Ionut D.;Ferreira, Diogo F.;Filho, Jorge B.
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.365-374
    • /
    • 2017
  • With the continuous evolution of the numerical methods and the availability of advanced constitutive models, it became a common practice to use complex physical and geometrical nonlinear numerical analyses to estimate the structural behavior of reinforced concrete elements. Such simulations may yield the complete time history of the structural behavior, from the first moment the load is applied until the total collapse of the structure. However, the evolution of the cracking pattern in geometrical discontinuous zones of reinforced concrete elements and the associated failure modes are relatively complex phenomena and their numerical simulation is considerably challenging. The objective of the present paper is to assess the applicability of the Applied Element Method in simulating the development of distinct failure modes in reinforced concrete walls subjected to monotonic loading obtained in experimental tests. A pushover test was simulated numerically on three distinct RC shear walls, all presenting an opening that guarantee a geometrical discontinuity zone and, consequently, a relatively complex cracking pattern. The presence of different reinforcement solutions in each wall enables the assessment of the reliability of the computational model for distinct failure modes. Comparison with available experimental tests allows concluding on the advantages and the limitations of the Applied Element Method when used to estimate the behavior of reinforced concrete elements subjected to monotonic loading.

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

A Study on the Evaluation of Design Moments of R/C Slab by the Finite Element Method (유한요소법(有限要素法)을 이용한 철근(鐵筋)콘크리트 슬래브의 설계(設計)모멘트 산정에 관한 소고(小考))

  • Lee, Sung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.21-29
    • /
    • 1988
  • Evaluation of accurate design moments in two directions is a primary concern in designing R/C Slab. For this purpose, the use of finite element method utilizing isoparametric plate element is proposed. An example of the simply supported slab shows that the results agree well wth those from elastic plate theory throughout the span. The finite element solutions are also compared with those from equivalent frame method in a flat plate example. It is indicated that the distribution of total moment through the width of design strip using the ACI coefficients is unreasonable. In contrary to this, for the same strip model, the finite element method gives accurate moments in two directions. The proposed method can be applied to any geometric configuration of the slab system, thus the approach is considered to be much advantageous and improved one compared with existing methods.

  • PDF

A Study on Load Bearing Capacity of Composite Member with Steel Rib and Shotcrete in NATM Tunnel (NATM 터널에서 강지보와 숏크리트 합성부재의 하중지지력에 관한 연구)

  • Moon, Sang Hwa;Shin, Young Wan;Kim, Seung Hwan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.221-229
    • /
    • 2012
  • Steel ribs such as H-beam or lattice girder are often reinforced to secure the stability of NATM tunnel when the ground is in the bad condition. When designing, however, steel ribs are not often taken into consideration on the numerical analysis when they are regarded as temporary tunnel supports until shotcrete shows its best performance or if they are, there are various modeling methods. This study shows behavior and loading capacity of steel ribs and shotcrete through the strength test on the bending, pressure and full-scaled. Also, we conducted and analyzed the experiment of composite member consisting of shotcrete and steel ribs under the same condition. Through the result, we can find the fact that shotcrete and steel ribs do not work as one unit because of slipping on the boundary. Also, when numerical analyzing, it was concluded that steel ribs cover all bending moment and shotcrete and steel ribs share with axial force according to the compressive strength.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

DNA Repair Capacity in Peripheral Blood Lymphocytes Predicts Efficacy of Platinum-based Chemotherapy in Patients with Gastric Cancer

  • Zhang, Yi-Yin;Gu, Kang-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5507-5512
    • /
    • 2013
  • Objective: To investigate the correlation between ERCC1 expression levels in tumor tissue and peripheral blood lymphocytes (PBL) from patients with gastric cancer and assess the relationship between PBL DNA repair rate (DRR) and the efficacy of platinum chemotherapy. Methods: A total of 53 patients with gastric cancer receiving surgery and 20 controls were studied. ERCC1 protein expression in tumour tissue and PBL were determined by immunohistochemical staining. The PBL DRRs of 47 advanced patients and 20 controls were estimated by comet assay. Results: The positive expression rates of ERCC1 were 67. 9%, 56. 6% and 10.0% in tumour tissues, PBLs of gastric cancer patients, and PBLs of the control group. PBL ERCC1 expression correlated with that in tissue (${\chi}^2$=15. 463, p=0.000). Pearson contingency coefficient=0.475). DRRs of cancer patients by tail length (TL) (Z=4. 662, p=0.000) and tail moment (TM) (Z=3. 827, p=0.000) were significantly lower than that of control group. When TL was applied as an indicator, the correlation between DRR and chemotherapy efficacy was significant (Spearman rank correlation r=0.327, p=0.032). Patients with low levels of DRR in PBL presented better short-term efficacy of chemotherapy than those with high levels of DRR. Conclusions: The ERCC1 expression in PBLs may indirectly reflect ERCC1 expression in gastric cancer tissues. Compared with non-cancer populations, patients with gastric cancer may have lower DNA repair capacity. DRR in PBL may predict the short-term efficacy of platinum-based chemotherapy for patients with advanced gastric cancer.

A Study on the Design of Single Phase Cycloconverter by Cosine Wave Crossing Control Method (코사인 점호방식에 의한 단상 싸이클로콘버터의 설계에 관한 연구)

  • 김시헌;안병원;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.71-85
    • /
    • 1993
  • The Cycloconverter that the author is going to treat in this paper, has strong advantages over the D.C. Link Inverter in points of chattering torque problem and natural commutation. Thus, the Cycloconverter is expected to be well applied to large and low-speed machines which require better speed control at low frequency. But the control circuit of Cycloconverter has two weak points described as follows. 1) Because of its rather complicated control circuit, it is likely to be illoperating due to unexpected noise signals, thus the higher the accuracy and reliability of the circuit is required to be, the more the circuit may cost. 2) Because the load current is not purely sinusoidal, the Cycloconverter may possibly be destroyed in case of inaccurate convert switching resulted from the difficulties in detecting the load current-zero and the current direction at the moment. In this paper, the author first of all intends to design and build a modified VVVF-type Noncirculating Current Cycloconverter to which recently proposed control methods are applied for improving the circuit simplicity, the control performance, and the system reliability. And then, experiments for observing the output waveforms of the Cycloconverter which is controlled by Singled-Board Computer using 8086 16-bit microprocesser are carried out. Finally the author concludes the result of this study as follows. 1) By replacing the conventional analog control circuits such as Reference Wave Generator, Cosine Timing Wave Generator, and Comparator with softwares, a great circuit simplicity is achieved. 2) The output of the designed Cycloconverter changes its frequency very fast without showing discontinuity of its waveform, and this waveform characteristics enables the smooth speed control of Induction Motor. 3) The design control circuit of Cycloconverter can be applied to the systems of 12 or 24 pulses because of its short processing period.

  • PDF

A motion descriptor design combining the global feature of an image and the local one of an moving object (영상의 전역 특징과 이동객체의 지역 특징을 융합한 움직임 디스크립터 설계)

  • Jung, Byeong-Man;Lee, Kyu-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.898-902
    • /
    • 2012
  • A descriptor which is suitable for motion analysis by using the motion features of moving objects from the real time image sequence is proposed. To segment moving objects from the background, the background learning is performed. We extract motion trajectories of individual objects by using the sequence of the $1^{st}$ order moment of moving objects. The center points of each object are managed by linked list. The descriptor includes the $1^{st}$ order coordinates of moving object belong to neighbor of the per-defined position in grid pattern, the start frame number which a moving object appeared in the scene and the end frame number which it disappeared. A video retrieval by the proposed descriptor combining global and local feature is more effective than conventional methods which adopt a single feature among global and local features.

  • PDF