• Title/Summary/Keyword: moment equations

Search Result 528, Processing Time 0.027 seconds

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

A Numerical Study on Inelastic lateral Torsional Buckling Strength of Doubly Stepped and Singly Symmetric I-Beam Subjected to Uniform Moment (균일모멘트가 작용하는 일축대칭 I형 양단 스텝보의 비탄성 횡-비틀림 좌굴에 관한 해석적 연구)

  • Park, Yi Seul;Park, Jong Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3495-3501
    • /
    • 2013
  • The cross-sections of continuous multi-span beams are sometimes suddenly increased or stepped at the interior supports of continuous beams to resist high negative moments. This paper investigates inelastic lateral-torsional buckling of monosymmetric stepped I-beams subjected to pure bending. A three-dimensional finite-element program ABAQUS and a regression program were used to analytically develop new design equation. The flange thickness ratio, flange width ratio and stepped length ratio were considered as parameters of this study. The combined effects of residual stresses and geometric imperfection on inelastic lateral-torsional buckling of beams are considered. The proposed solution can be easily used to calculation for inelastic lateral torsional buckling strengths of monosymmetric beams with doubly stepped cross sections and to develop new design equations for inelastic lateral-torsional buckling resistances of stepped beams.

Simplified Formulae for Free Earth Supported Anchored Sheet-Pile Wall (앵커식 자유지지 널말뚝벽의 설계용 간편식)

  • Kim, Khi-Woong;Kwon, Min-Seok;Paik, Young-Shik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Sheet piles are often used to build continuous walls for the waterfront structures, and also used for some temporary structures, such as the braced cuts. Sheet pile walls may be divided into two basic categories that is cantilever and anchored. Stock(1992) developed an expedient format for determining the depth, maximum bending moment and anchor force of sheet pile wall for cantilever and free earth supported anchored wall. But, that is useful only in case that water table exists above the dredge line. In this study, a simplified formulae was developed for the design of the anchored free earth supported sheet pile wall both in sand and clay by solving the derived equations and regression analysis. It can be used whether the ground water table is above or under the dredge line.

  • PDF

Spudcan Design under Combined Load in Southwestern Sea of Korea (복합하중을 고려한 국내 서남해 지반에서의 Spudcan 설계)

  • Yoo, Jinkwon;Park, Duhee;Mandokhail, Saeed-ullah Jan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.13-22
    • /
    • 2016
  • An optimized spudcan was designed for the Southwestern Sea, an area mostly comprised of sand and soft clay layers. The spudcan was designed using guidelines by SNAME, ISO, and InSafeJIP, as well as the yield surface for combined loads. The probe test method was applied to define a yield surface used in estimating spudcan stability. Numerical analyses that considered vertical, horizontal, and moment loads in Southwestern Sea resulted in a design of 8 m diameter spudcan. Additionally, the empirical equations suggested by previous studies can estimate a reasonable spudcan bearing capacity at shallow depth. Each yield surface calculated from Mohr Coulomb and Hardening soil model showed different shapes, however the yield surface also grew with increasing spudcan diameter. This yield surface is a useful reference, along with site investigation results and published guidelines, to estimate the stability of a spudcan in the Southwestern Sea.

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Condensation and coagulation of metallic species with fly ash particles in a waste incinerator (폐기물 소각시 생성되는 유해 중금속물질과 연소실내 비산재와의 응축, 응집 현상에 대한 연구)

  • Yu, Ju-Hyeon;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.264-274
    • /
    • 1997
  • A numerical analysis on condensation and coagulation of the metallic species with fly ash particles pre-existing in an incinerator was performed. Waste was simplified as a mixture of methane, chlorine, and small amounts of Pb and Sn. Vapor-phase amounts of Pb- and Sn -compounds were first calculated assuming a thermodynamic equilibrium state. Then theories on vapor-to-particle conversion, vapor condensation onto the fly ash particles, and particle-particle interaction were examined and incorporated into equations of aerosol dynamics and vapor continuity. It was assumed that the particles followed a log-normal size distribution and thus a moment model was developed in order to predict the particle concentration and the particle size distribution simultaneously. Distributions of metallic vapor concentration (or vapor pressure) were also obtained. Temperature drop rate of combustion gas, fly ash concentration and its size were selected as parameters influencing the discharged amount of metallic species. In general, the coagulation between the newly formed metal particles and the fly ash particles was much greater than that between the metal particles themselves or between the fly ash particles themselves. It was also found that the amount of metallic species discharged into the atmosphere was increased due to coagulation. While most of PbO vapors produced from the combustion were eliminated due to combined effect of condensation and coagulation, the highly volatile species, PbCl$_{2}$ and SnCl$_{4}$ vapors tended to discharge into the atmosphere without experiencing either the condensation or the coagulation. For Sn vapors the tendency was between that of PbO vapors and that of PbCl$_{2}$ or SnCl$_{4}$. To restrain the discharged amount of hazardous metallic species, the coagulation should be restrained, the number concentration and the size of pre-existing fly ash particles should be increased, and the temperature drop rate of combustion gas should be kept low.

A Study on Flexural Ductility of Longitudinally Stiffened Plate Girders (수평보강재가 설치된 플레이트 거더의 휨 연성에 관한 연구)

  • Yoon, Dong Yong;Kim, Kyung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.643-653
    • /
    • 2007
  • The ultimate bending strength and flexural ductility performance of longitudinally stiffened plate girders fabricated with mild steel were investigated utilizing nonlinear incremental finite element analysis. AASHTO LRFD (2002) design specifications were reviewed for possible application of longitudinally stiffened plate girders as compact sections. In order to investigate compact section requirements for plate girders with longitudinal stiffeners in webs, a number of full-scale plate girders were modeled and analyzed up to the collapse under pure bending condition. It was found that the slenderness of sub panel of the webs, the stiffness of longitudinal stiffeners, and the slenderness of compression flanges are key parameters governing the flexural ductility of the plate girders. It was also found from finite element analysis that longitudinally stiffened plate girder sections can satisfy compact section requirements both in full plastic moment capacity and flexural ductility requirement. New design equations have been proposed for longitudinally stiffened plate girders to be treated as compact sections.

The Influence of the Aspect Ratio on the Natural Frequency of the Composite Laminated Plates (복합적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.14-19
    • /
    • 2010
  • Theories for advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the senior author. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms(Mx) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the composite laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes.

  • PDF