• Title/Summary/Keyword: moment connections

Search Result 459, Processing Time 0.028 seconds

An experimental study on the Behaviour of Concrete-Filled Square Steel Tubular Column·H-Beam End-plate Connections with Penetrated HT-Bolts (관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥-H형강 보 접합부의 거동에 관한 실험적연구)

  • Kim, Jae Keon;Lee, Myong Jae;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.211-219
    • /
    • 1998
  • The objective of this study is to investigate the structural behavior of Concrete-Filled Tubular Column H-Beam End-Plate Connections with Penetrated HT-Bolts under monotonic load. Simple bending tests are carried out with 5 kinds of specimens including beam specimen. The parameters of these tests are the thickness (T=22, 26. 30mm) of End-plates and the diameter (M=20, 22mm) of bolts. From the tests, the increasing values of yielding strength and initial stiffness of each specimen were gained as the thickness of End-plates and diameter of bolts are increasing. And the application of Bjorhovde et al and Eurocode 3 classification method by non-dimensional moment-rotation curves to the connections showed that all of them are included in rigid region as far as initial stiffness is concerned and all of them are also rigid as far as ultimate strength.

  • PDF

Evaluation of shear lag parameters for beam-to-column connections in steel piers

  • Hwang, Won-Sup;Kim, Young-Pil;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.691-706
    • /
    • 2004
  • The paper presents shear lag parameters for beam-to-column connections in steel box piers. Previous researches have analyzed beam-to-column connections in steel piers using a shear lag parameter ${\eta}_o$ obtained from a simple beam model, which is not based on a reasonable design assumption. Instead, the current paper proposes a cantilever beam model and has proved the effectiveness through theoretical and experimental studies. The paper examines the inaccuracy of the previous researches by estimating the effective width, the width-span length ratio L/b, and the sectional area ratio S of a cantilever beam. Two different shear lag parameters are defined using the cantilever model and the results are compared each other. The first type of shear lag parameter ${\eta}_c$ of a cantilever beam is derived using additional moments from various stress distribution functions while the other shear lag parameter ${\eta}_{eff}$ of a cantilever beam is defined based on the concept of the effective width. An evaluation method for shear lag stresses has been investigated by comparing analytical stresses with test results. Through the study, it could be observed that the shear lag parameter ${\eta}_{eff}$ agrees with ${\eta}_c$ obtained from the $2^{nd}$ order stress distribution function. Also, it could be observed that the shear lag parameter ${\eta}_c$ using the $4^{th}$ order stress distribution function almost converges to the upper bound of test results.

Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections

  • Saravanan, M.;Arul Jayachandran, S.;Marimuthu, V.;Prabha, P.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • This paper presents the details of an advanced Finite Element (FE) analysis of a plane steel portal frame with semi-rigid beam-to-column connections subjected cyclic loading. In spite of several component models on cyclic behaviour of connections presented in the literature, works on numerical investigations on cyclic behaviour of full scale frames are rather scarce. This paper presents the evolution of an FE model which deals comprehensively with the issues related to cyclic behaviour of full scale steel frames using ABAQUS software. In the material modeling, combined kinematic/isotropic hardening model and isotropic hardening model along with Von Mises criteria are used. Connection non-linearity is also considered in the analysis. The bolt slip which happens in friction grip connection is modeled. The bolt load variation during loading, which is a pivotal issue in reality, has been taken care in the present model. This aspect, according to the knowledge of the authors, has been first time reported in the literature. The numerically predicted results using the methodology evolved in the present study, for the cyclic behaviour of a cantilever beam and a rigid frame, are validated with experimental results available in the literature. The moment-rotation and deflection responses of the evolved model, match well with experimental results. This proves that the methodology for evolving the steel frame and connection model presented in this paper is closer to real frame behaviour as evident from the good comparison and hence paves the way for further parametric studies on cyclic behaviour of flexibly connected frames.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

A Study on Beam-to-Column Connections with Plate Type Energy Absorption System (플레이트형 에너지 흡수장치를 가지는 기둥-보 접합부에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.103-114
    • /
    • 2013
  • Recently, there is a growing interest on sustainable connection system that makes it possible to reuse of main structural members by concentrating most of the damage in the frame caused by strong horizontal force, such as earthquake, to damper. In this study proposed a new type of damage-controlled connection system applying these concepts and analysed the major structural performance of the proposed system through the full-scale cyclic loading test and nonlinear finite element analyses. According to the result, it derived the optimal damper/beam strength ratio that minimize the damage of main members and satisfy at least the fully plastic moment of the beam. And it was to verify the possibility of applying as seismic connection details.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Cyclic testing of steel I-beams reinforced with GFRP

  • Egilmez, O. Ozgur;Yormaz, Doruk
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. This threat is especially valid for existing steel moment frame buildings with beams that lack adequate flange/web slenderness ratios. As the use of fiber reinforced polymers (FRP) have increased in strengthening and repair of steel members in recent years, using FRPs in stabilizing local instabilities have also attracted attention. Previous computational studies have shown that longitudinally oriented glass FRP (GFRP) strips may serve to moderately brace beam flanges against the occurrence of local buckling during plastic hinging. An experimental study was conducted at Izmir Institute of Technology investigating the effects of GFRP reinforcement on local buckling behavior of existing steel I-beams with flange slenderness ratios (FSR) exceeding the slenderness limits set forth in current seismic design specifications and modified by a bottom flange triangular welded haunch. Four European HE400AA steel beams with a depth/width ratio of 1.26 and FSR of 11.4 were cyclically loaded up to 4% rotation in a cantilever beam test set-up. Both bare beams and beams with GFRP sheets were tested in order to investigate the contribution of GFRP sheets in mitigating local flange buckling. Different configurations of GFRP sheets were considered. The tests have shown that GFRP reinforcement can moderately mitigate inelastic flange local buckling.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발)

  • Hwang, Byoung-Kuk;Jeon, Seong-Min;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.27-35
    • /
    • 2007
  • This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF