• Title/Summary/Keyword: moment characteristics

Search Result 1,182, Processing Time 0.032 seconds

The effect of number of milling cutting edges on cutting characteristics (밀링 공구의 절삭날 수가 절삭특성에 미치는 영향)

  • 문창성;이위로;이병휘;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.161-165
    • /
    • 2001
  • End milling is one of the most widely used machining operations. It is associated with productivity and production quality progress. In metal cutting with up and down milling, moment is important factor to diagnose the cutting characteristics because the amount of tool wear directly influences the moment. In this study, the effects of number of milling cutting edges on the cutting performance, especially on the moment, are investigated. The results acquired through the cutting test measuring moment show that up milling is superior to down milling.

  • PDF

The characteristics of section applied image inspection system to the moment values are invariant with respect to variable object size and rotation (단면의 성질을 적용한 크기와 회전 변화에 불변인 영상 검사 시스템)

  • 이용중;김태원;김기대;류재엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.131-136
    • /
    • 2001
  • The purpose of this paper is to develop image inspection system endows an automatic operating and measuring that the moment values are invariant with respect to variable object size and rotation. In this paper, using these moment feature vector with Hu s 7 invariant moment is also given. The characteristics of section which is applied in the mechanics used moment descriptor of invariant moment detection algorithm for image inspection system. Corresponding rates between 94% and 96% have been achived for all object tested.

  • PDF

Instantaneous Speed and Mechanical Inertia Moment Estimation for the improvement of the Low Speed Control Characteristics of Induction Machines (유도전동기 저속 운전 특성 개선을 위한 순시 속도 및 기계관성모먼트 추정)

  • Hyun, Dong-Seok;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1996
  • The purpose of this paper is the improvement of the speed control characteristics of induction machines suited the low resolution incremental-type encoder in a low speed region. In order to improve the control characteristics in a low speed range, we propose that the instantaneous speed control method by the instantaneous speed detection which is implemented by the disturbance torque observer. Also, in case of the speed control by the instantaneous speed detection, the simple estimation method of the mechanical inertia moment is proposed. We will the carry out the mathematical verification of the proposed theory by the theoretic advisement connected with the convergence relationship of the estimated inertia moment to the real mechanical inertia moment. Computer simulations and experiments by the IGBT inverter adopting DSP is performed to verify the proposed method.

  • PDF

Comparison of Electromagnetic Force Characteristics and Experiment of Pitching Moment in Permanent Magnet Linear Synchronous Motor According to the Moving Iron Core and Stator Topology (철심형 이동자와 고정자의 형상에 따른 영구자석 선형 동기전동기의 전자기력 특성 비교 및 피칭 모멘트 실험)

  • Lee, Seung-Han;Cho, Han-Wook;Khim, Gyungho;Oh, Jeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1695-1702
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of force characteristics in permanent magnet linear synchronous motor for accuracy prediction of linear motion machine tools. In particular, the pitching moment resulting from attraction force ripple has been analysed and tested. Firstly, we analysed the characteristics of detent force, attraction force, and pitching moment in permanent magnet linear synchronous motor according to the design techniques such as auxiliary teeth, chamfering, and permanent magnet skewing. In addition, we suggested the experimental set for measurement of pitching moment. Finally, the results from measurement shows the good agreement with those obtained from finite element analysis results.

Automatic Modulation Recognition Algorithm Based on Cyclic Moment and New Modified Cumulant for Analog and Digital Modulated Signals (Cyclic Moment 및 변형 Cumulant를 기반으로 한 아날로그 및 디지털 변조신호 자동변조인식 알고리즘)

  • Kim, Dong-Ho;Kim, Jae-Yoon;Sim, Kyu-Hong;Ahn, Jun-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2009-2019
    • /
    • 2013
  • In this paper, we propose an automatic modulation recognition algorithm based on cyclic moment and new modified cumulant for analog and digital modulation signals. It is noteworthy that each modulated signal has different cycle frequency characteristics according to its order of cyclic moment. By means of this characteristics as classification features, various modulated signals can be efficiently classified. Also, to identify modulated signals having the same cycle frequency characteristics, we take advantage of the additional classification factors such as variations of envelope and phase as well as modified cumulant. The proposed algorithm was evaluated by considering the number of symbols, SNR, and frequency offset. In the simulation condition where the number of gathered symbols was about 819, and SNR and frequency offset were above 10dB and below 25%, respectively, the average accuracy of the proposed algorithm was more than 95%.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions) (채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

A study on Design for Radiation Element of Slotted Waveguide by the Method of Moment (모멘트법을 이용한 도파관 복사소자의 설계에 관한 연구)

  • 민경식;박세현;김동철;임학규
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.135-138
    • /
    • 2000
  • This paper presents design for radiation element of slotted waveguide by the method of moment. The piecewise sinusoidal function as the basis function is used for the Moment Method. From the analytically results based on the Galerkin's moment method, frequency characteristics and radiation power is investigated for the design parameter such as the slot length, offset and angle. This paper also discusses that the radiation power is controled by the slot offset and angle. The thickness of the waveguide wall is also discusses in the analysis.

  • PDF

Analysis and Experimental Verification of Linear Motor Moment for Precision Machine Tools (정밀 공작기계용 리니어모터 모멘트의 해석 및 실험적 검증)

  • Cho, Young-Taek;Cho, Han-Wook;Lee, Seung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.884-885
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of pitching moment in permanent magnet linear synchronous motor (PMLSM) for precision machine tools. In this paper, we define force characteristics of the moment and the moment analysis by the finite element method. Manufacture experiment and we will compare the results of finite element analysis and experimental results.

  • PDF

A Study on the Robust Speed Control Characteristics of Induction Motor Using State Observer (상태 관측기를 이용한 유도전동기의 강인한 속도 제어특성에 관한 연구)

  • 이성근;노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.503-511
    • /
    • 1997
  • In 3 phase induction motor control system, the speed control using the load torque observer becomes robust against disturbances by means of a feed-forward control of the estimated load torque component. In case of variation of inertia moment, the estimated load torque has error because the observer uses the nominal inertia to estimate the load torque. And so, it is difficult to obtain good speed control characteristics. This paper has two study target strategy. First, we executes feed-forward control with the load torque observer when motor inertia has nominal value and compare it with conventional PI con¬trol. The second strategy estimates inertia moment error using the load torque observer when inertia moment change. The proposed two strategy is confirmed through the computer simulations and the experimental implementations by TMS320C31 microprocessor.

  • PDF