• Title/Summary/Keyword: moment capacity

Search Result 931, Processing Time 0.026 seconds

Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope (실물 재하시험을 통한 성토사면에 근접한 철도 전철주기초의 저항모멘트 평가)

  • Lee, Su-Hyung;Lee, Sung-Jin;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The moment responses of electric pole foundations for a railway were investigated using real-scale load tests. Large overturning moments were applied to two circular rigid piles with a 0.75 m diameter and a 2.5 m embedded depth; the circular rigid piles were installed in an actual railway embankment fill. Two different loading directions-toward the fill slope and toward the track -were applied to evaluate the influence of the fill slope on the moment capacities of the foundations. It was found that the failure of the foundations that were constructed according to Korean railway practices exhibited a sudden overturning pattern without any significant pre-failure displacement. The moment capacity toward the fill slope was less than the moment capacity toward the track by 30%. From the test results, the geometry factor (K), which accounted for the reduction of the moment capacity, due to the fill slope, was 0.7. Moment capacities determined from the load tests were compared with those predicted from three existing design methods, and their applicability was discussed.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity (박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력)

  • Lee, Gye-Hee;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this study, based on the temperature distribution and the spalling histories those obtained in the companion paper, the thermal stress and moments of underground box structure were estimated. Additionally, the ultimate sectional moment considering with the thermal nonlinearities of material were estimated and the load carrying capacity of underground box structure was also obtained. As results, the load carrying capacity of negative moment part was dominated by thermal moment that come from thermal gradient of the section. However, the load carrying capacity of the positive moment part was rules by the yield stress of rebar that exposed to the high temperature induced spalling phenomena.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

Evaluation of Load Carrying Capacity of RC Slab Bridges Considering Moment Redistribution (모멘트 재분배를 고려한 RC 슬래브교의 내하력 평가)

  • Kim Hu Seung;Kim Dae Joong;Yum Hwan Seok;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • This paper describes a proposal for evaluation load carrying capacity of reinforced concrete slab bridges considering the moment redistribution. Recognition of redistribution of moments can be important because it permits a more realistic appraisal of the actual load-carrying capacity of a structure, thus leading to improved economy. In addition, it permits the designer to modify, within limits, the moment diagrams for which members are to be designed. The predicted results shows that moment redistribution are different from estimated by the current KCI, ACI 318-02, EC2 provisions, and propose reasonable load carrying capacity of the reinforced concrete slab bridge.

  • PDF

Seismic performance evaluation of a RC special moment frame

  • Kim, Taewan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.671-682
    • /
    • 2007
  • The probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building in this study. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relatively smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the objectives for both local and global collapses.

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

Predicting Moment Carrying Capacity of the "sagae" Connection Using the Finite Element Method

  • Jeong, Gi Young;Park, Moon-Jae;Park, Joo-Saeng;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.415-424
    • /
    • 2013
  • The goal of this study is to analyze the effects of geometries of mortise and tenon on moment carrying capacity of the "sagae" connection. Effects of different tenon widths, mortise depths of connection from the top and bottom beams on stress distribution were investigated using the finite element method (FEM). Critical normal and shear stresses occurred at the reentrant corner from the mortise of the bottom beam. The maximum moment carrying capacity of the sagae connection from the FEM was validated from the results of experimental test. Maximizing moment carrying capacity of the sagae connection was found when the tenon width and mortise depth from the two beams were 40 mm and 60 mm, respectively.

A new procedure for load-shortening and -elongation data for progressive collapse method

  • Downes, Jonathan;Tayyar, Gokhan Tansel;Kvan, Illia;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.705-719
    • /
    • 2017
  • Progressive Collapse Method (PCM) has been broadly applied to predict moment-carrying capacity of a hull girder, however accuracy of PCM has not been much studied. Accuracy of PCM is known to be dependent on how Load-Shortening and -Elongation (LSE) curve of a structural units are well predicted. This paper presents a new procedure to determine LSE datum based on box girder Finite Element Analyses (FEAs) instead of using finite element model of stiffened panels. To verify reliability of FEA results, the simple box girder collapse test results are compared with FEA results of same box girders. It reveals one frame-based box girder model is sufficiently accurate in terms of ultimate strengths of the box girders. After extracting LSE data from the box girders, PCM-based moment-carrying capacities are compared with those from FEAs of the box girders. PCM results are found to be equivalent to FEAs in terms of moment-carrying capacity if accurate LSE data are secured. The new procedure is applied to well-known 1/3 scaled frigate full section. Very excellent moment-carrying capacity of frigate hull section is obtained from PCM with LSE data from box girder FEAs.

A Study on the Evaluation of Flexural Capacity and Design Equation of FRP Reinforcement-Concrete Beams (FRP보강근-콘크리트보의 휨성능과 휨설계식의 평가 연구)

  • Ko, Dong Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In this paper, the flexural capacity equation of FRP-bar reinforced concrete beams was verified by comparing the experimental results and flexural capacity obtained according to the ACI procedure. And, also the economic feasibility of FRP-bar reinforced concrete beams was analyzed by comparing nominal moment capacity of beams. The results of analysis were as follows, 1) GFRP concrete beams have lower flexural performance than reinforced concrete beams, whereas CFRP concrete beams have similar flexural performance to reinforced concrete beams under the same reinforcement ratio 2) Although the design moment increased as the compressive strength of concrete increased, the flexural performance of GFRP reinforced concrete beams was found to be lower than the reinforced concrete beams for all reinforcement ratios.