• Title/Summary/Keyword: molten carbonate fuel cell

Search Result 212, Processing Time 0.027 seconds

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.

The Ejector Design and Test for 125 kW Class Molten Carbonate Fuel Cell System (125 kW급 용융탄산염 연료전지 시스템의 이젝터 설계 및 시험)

  • KIM, BEOMJOO;PARK, SOO-MAN;SONG, OH-SEOP
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Korea Electric Power Research Institute (KEPCO RI) had developed molten carbonate fuel cell (MCFC) system since 1993. Finally, KEPCO RI developed and operated a 125 kW MCFC system in 2010. To make MCFC system compact, it is indispensable to install an ejector in this system where the anode off gas, the cathode off gas, and fresh air are mixed before flowing to the catalytic burner. KEPCO RI had developed various ejectors for MCFC system since 2006. The 125 kW MCFC system built with the developed ejector was operated successfully in Boryeong Thermal Power Plant in 2010. This 125 kW MCFC ejector was designed on the basis of the experimental results of 5 kW and 75 kW MCFC ejectors. The main goal of ejector design in our MCFC system is to maintain the entrainment ratio and the pressure between fuel cell stack and catalytic burner within the operating range. In this paper, the design results of the ejector are presented based on the 125 kW MCFC system operating conditions. In addition, a designed ejector was manufactured and installed in the MCFC system. As the fuel cell is under load operation, the pressure surrounding the ejector was measured to ensure that the fuel cell system is operating smoothly.

Atmospheric and Pressurized Operation of a 25 kW MCFC Stack (25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전)

  • Koh, Joob-Ho;Seo, Hai-Kung;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF

A study on the interararanular corrosion behavir of stainless steel in molten carbonate salt EPR test (EPR 방법에 의한 용융탄산염 내에서의 스텐인레스강의 입계부식에 관한 연구)

  • 황응림;서병환;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.223-230
    • /
    • 1998
  • The separator for a molten carbonate fuel cell(MCFC) is mode of stainless steel and known to the suscepibility to corrosion due to environments of high temperature molten carbonte electrolyte. Considering the sensitization of stainless steel in the temperature range of 425~$815^{\circ}C$, the separator is expected to be sensitized so that the interganular corrosion (IGC) occurs during the cell operation at about $650^{\circ}C$. In this study, EPR(electrochemical potentiokinetic reactivation) technique was examined by relating some elements(mainly C and Cr) to the degree of sensitization of austenitic stainless steels in the molten carbonate salt at $650^{\circ}C$and the possible mechanism of intergranular corrosion was analyzed.

  • PDF

Design of a 100 kW MCFC Stack and Power Generation System (100 kW급 용융탄산염 연료전지 스택 및 발전 시스템 설계)

  • Koh, Joon-Ho;Kang, Byoung-Sam;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.146-151
    • /
    • 2001
  • Several design parameters for a 100 kW molten carbonate fuel cell stack was described. Approximately 170 cells are required to generate 100 kW at a current density of $125\;mA/cm^{2}$ with $6000\;cm^{2}$ cells. An overall heat balance was calculated to predict exit temperature. In order to limit the stack temperature in the range of $600-700^{\circ}C$, current load cannot exceed $75\;mA/cm^{2}$ at atmospheric operation. The 100 kW power is expected only under pressurization. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^{2}$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition.

  • PDF

Performance Evaluation and Development of the Power Conditioning System for 250kW Molten Carbonate Fuel Cell (250kW급 MCFC용 전력변환기 개발 및 성능평가)

  • Lee, Jin-hee;Son, Ui-kwon;Suh, In-young
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.261-262
    • /
    • 2010
  • This paper presents the design, development and performance of a power conditioning system (PCS) for application to a Molten Carbonate Fuel Cell (MCFC) for high power generation system. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. A control method for parallel operation of 250kW PCS was implemented and verified respectively. Experimental performances are compared to minimum target requirements of the PCS for MCFC respectively.

  • PDF

Corrosion Behavior of Anode Current Collectors in Molten Carbonate Fuel Cells (용융탄산염 연료전지 Anode부 집전판의 부식특성)

  • Han, Won-Kyu;Ju, Jeong-Woon;Shin, Jung-Cheol;Kang, Sung-Goon;Jun, Joong-Hwan;Lim, Hee-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2008
  • The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.

Analysis of the Homogenization of the Elastic Behavior for a Sheet with Sheared Protrusions using Hexahedral Mesh Coarsening (육면체 요소 재구성을 통한 개방형 사다리꼴이 성형된 판재의 탄성 거동 균질화에 대한 연구)

  • Lee, C.W.;Yang, D.Y.;Park, J.S.;Kang, D.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • The current collector for the molten carbonate fuel cell (MCFC) which has sheared protrusions is manufactured by the three-stage forming process that integrates slitting, preforming and final forming. Due to the repetition of sheared protrusions, an effective simulation method is required to predict the mechanical behavior. In the current study, a sheet with sheared protrusions was assumed to be an orthotropic plate, which has the same length, width and height. FEM simulations were conducted to evaluate the homogenized properties of the current collector, which has 4 (longitudinal direction) x 4 (transverse direction) sheared protrusions. The simulation model was constructed using hexahedral mesh coarsening. From the verification examples, it was found that the proposed simulation method was efficient within reasonable accuracy. The calculated homogenized properties can be applied to the design of a stack for molten carbonate fuel cells and the prediction of mechanical behavior for other applications.

A Study on Protection of Stainless Steel Substrate against Corrosion in Molten Carbonate by Formation of Aluminum Diffusive Layer Using a Slurry Coating Method (슬러리 코팅법에 의한 스테인레스 스틸 표면에서의 알루미늄 확산막 제조 및 용융탄산염 내에서의 내식 특성 연구)

  • Nam S. W.;Hwang E. R.;Magtanyuk A. P.;Hong M. Z.;Lim T. H.;Oh I. -H.;Hong S. -A.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A stainless steel separator for a molten carbonate fuel cell is usually coated with aluminum diffusive layer to protect its surface against corrosion by the molten carbonate at high temperatures. In this study, a relatively simple method was devised to form the aluminum diffusive layer on a stainless steel substrate. Slurry coating of aluminum on the substrate followed by heat treatment under reducing atmosphere at $650\~800^{\circ}C$ produced the aluminum diffusive layer of $25\~80{\mu}m$ thickness. The thickness of aluminum diffusive layer increased with increasing the temperature or duration of the heat-treatment. The corrosion resistance against molten carbonate under oxidizing atmosphere was significantly improved by aluminum diffusive layer formed by the sluny painting and heat treatment method. Moreover, the sample prepared in this study showed corrosion behavior similar to the sample with aluminum diffusive layer prepared by ion vapor deposition and heat treatment.