• 제목/요약/키워드: molten alloy

검색결과 208건 처리시간 0.028초

Effect of Flux on the Recovery Behavior of Valuable Metals during the Melting Process of Aluminum Can Scrap

  • Chulwoong Han;Yong Hwan Kim;Dae Geun Kim;Man seung Lee
    • Archives of Metallurgy and Materials
    • /
    • 제66권4호
    • /
    • pp.1023-1027
    • /
    • 2021
  • This study investigated the effect of flux type and amounts on recovery behavior of aluminum alloy during the melting process of Al can scrap. The heat treatment was conducted to remove the coating layer on the surface of can scrap at 500℃ for 30 min. The molten metal treatment of the scrap was performed at 750℃ in a high-frequency induction furnace with different flux types and amounts. It was observed that the optimum condition for recovery of Al alloy was to add about 3 wt.% flux with a salt and MgCl2 mixing ratio of 70:30 during melting process. The mechanical properties of recovered Al alloy were about 254.8 MPa, which is similar to that of the virgin Al5083 alloy.

브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향 (Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process)

  • 김용호;유효상;나상수;손현택
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.

PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선 (Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process)

  • 박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정 (Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys)

  • 송정호;노윤영;송오성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

용융드래그방법을 이용한 마그네슘 합금 박판의 제조조건 확립 (Establishment of Manufacturing Conditions for Magnesium Alloy Thin Plate using Melt Drag Method)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.511-518
    • /
    • 2021
  • An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.

리튬용융염계 산화성분위기에서 초합금의 고온 부식거동 (Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere)

  • 조수행;임종호;정준호;오승철;서중석;박성원
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

금형 충전 해석을 이용한 연료전지 분리판 진공 다이캐스팅 금형 설계 방안 및 실험 검증 (Vacuum Die Casting Mold Design of Fuel Cell Bipolar Plate using Die Filling Simulation and Experimental Verification)

  • 진철규;장창현;강충길
    • 한국주조공학회지
    • /
    • 제32권2호
    • /
    • pp.65-74
    • /
    • 2012
  • In this paper, we present the results of our studies on optimal die design towards development of a vacuum die casting process to fabricate fuel cell bipolar plate with micro-channel array. Cavity and overflow shape is designed by computational filling analysis of MAGMA soft. Optimal die design consists of seven overflows at the end of cavity and three overflows at each side wall of cavity. The molten metal that passed the gate and reached the side wall flowed into the side overflow, no turbulent flow occurred, and the filling behavior and velocity distribution were uniform. In addition, partially solidified molten metal passing through the channel was perfectly eliminated by overflow without back-flow. When vacuum pressure, injection speed of low and high region was 300 mbar, 0.3 m/s and 2.5 m/s respectively with Silafont 36 die casting alloy, sound sample without casting defects was obtained. The experimental results are nearly consistent with simulation results.

주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구 (A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process)

  • 배원병;이승재;유민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF