• 제목/요약/키워드: molten alloy

검색결과 202건 처리시간 0.025초

다이캐스팅 스케줄링의 결품 방지 기법 (A Scheme of Preventing Product Shortage for Die Casting Scheduling)

  • 박용국;양정민
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1565-1574
    • /
    • 2011
  • 다이캐스팅 스케줄링은 각 쉬프트마다 생산되는 주조제품의 개수를 결정하여 주어진 성능지수를 최적화하는 작업이다. 본 논문은 다이캐스팅 스케줄을 실제 주조공정에 적용할 때 불량주물 등의 이유로 발생하는 결품을 방지하는 새로운 기법을 제안한다. 선형계획법으로 모델링된 기존의 다이캐스팅 스케줄링은 용탕에 대한 용융로의 평균효율을 최대로 하지만 주조공정에서 불량품이 발생하는 문제에는 대처하지 못한다. 제안된 기법에서는 이전 쉬프트에서 불량주물이 발생하는 경우, 이를 대체할 수 있도록 현재 쉬프트에서 주조공정이 끝나고 남은 용탕의 잔여량을 이용하여 추가로 생산한다. 이 방법은 이미 최적화된 투입 용탕의 양이나 스케줄링 결과를 변경하지 않고도 불량이 발생한 주조제품의 생산량을 최대한 보상할 수 있는 장점을 지닌다. 사례 연구를 통하여 새로 제안된 기법의 우수성과 응용 가능성을 검증한다.

선택적 레이저 용융 공정으로 제조된 AISI 316L 합금의 인장 및 충격 인성 특성에 미치는 응력 완화 열처리의 영향 (Effect of Stress Relieving Heat Treatment on Tensile and Impact Toughness Properties of AISI 316L Alloy Manufactured by Selective Laser Melting Process)

  • 양동훈;함기수;박순홍;이기안
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650℃ / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.

다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력 (Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures)

  • 민순기;이준호
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.13-17
    • /
    • 2009
  • A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.

전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정 (Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권9호
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

LiCl 및 LiCl-${Li_2}O$ 용융염에서 Fe-Ni-Cr 합금의 부식거동 연구 (A Study on the Corrosion Behavior of Fe-Ni-Cr Alloys in Molten Salts of LiCl and LiCl-${Li_2}O$)

  • 조수행;장준선;홍순선;신영준;박현수
    • 한국재료학회지
    • /
    • 제10권7호
    • /
    • pp.471-477
    • /
    • 2000
  • Fe-Ni-Cr 합금의 용융염 부식거동을 $650~850^{\circ}C$ 온도범위에서 조사하였다. 용융염 LiCl에서 Cr을 포함하지 않는 KSA(Kaeri Superalloy)-1 합금은 Fe의 내부산화가 발생하고, Cr을 포함한 KSA-4, Incoloy 800H와 KSA-5는 LiCrO$_2$의 치밀한 보호막이 형성되었다. 혼합용융염 $LiCl-LiO_2$O에서 KSA-1은 Fe의 내부산화, KSA-4는 Cr의 내부산화가 발생하였고, Cr 농도가 높은 Incoloy 800H와 KSA-5는 $LiCrO_2$의 다공성 피 이 형성되었다. 혼합용융염 $LiCl-Li_2$O 에서는 Cr 농도의 증가에 따라 부식속도가 증가하였으며, 부식속도는 시간의존선을 8%Cr 이하의 합금에서는 포물선법칙, 8%Cr 이상의 합금에서는 직선법칙을 나타내었다. 이러한 현상은 Li$_2$O에 의한 보호성 산화물 $Cr_2O_3$의 염기성 용해기구로 설명할 수 있다.

  • PDF

용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행 (Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys)

  • ;백응률
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

용융탄산염형 연료전지 대체음극재료인 Co/Ni alloy의 용융염에서의 in situ oxidation/lithiation과 전기화학적인 거동 연구 (In Situ Oxidation/Lithiation and Electrochemical Behavior of CoNi Alloy as Alternative Material for Molten Carbonate Fuel Cell Cathodes)

  • 조은애;류보현;한종희;윤성필;남석우;임태훈;홍성안;김광범
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2002년도 추계총회 및 학술발표회
    • /
    • pp.3-4
    • /
    • 2002
  • PDF

용융염 LiCl 및 LiCl-$Li_2O$에서 내열합금 More 1과 Super 22H의 부식거동 (Corrosion Behavior of Heat-Resistant Alloys of More 1 and Super 22H in Molten Salt of LiCl and LiCl-$Li_2O$)

  • 조수행;박상철;장준선;신영준;박현수
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.556-563
    • /
    • 1999
  • The corrosion behavior of heat-resistant alloys, More 1 and Super 22H in molten salts of LiCl and $LiCl-Li_2$O was investigated in the temperature range of $650~850^{\circ}C$. In a molten salt of LiCl, a dense protective oxide scale of $LiCrO_2$ was formed, following growth of oxide scale with parabolic kinetics. But in a mixed molten salt of LiCl, a dense protective oxide scale of $LiCrO_2$ was formed, following growth of oxide scale with parabolic kinetics. But in a mixed molten salt of $LiCl-Li_2$O, a porous non-protective scale of Li\ulcorner(Cr, Ni, Fe)\ulcornerO$_2$was formed, following growth of oxide scale with linear kinetics. The corrosion rate increased slowly with the increase of temperature up to $750^{\circ}C$, but above $750^{\circ}C$ rapid increase in corrosion rate observed. The corrosion behavior of Super 22H alloy was similar to that of More 1 alloy, but Super 22H showed higher corrosion resistance than More 1.

  • PDF