• Title/Summary/Keyword: molecular structures

Search Result 1,348, Processing Time 0.026 seconds

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • Lee, Jeong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF

Interdiffusion at Interfaces of Binary Polymer Mixtures with Different Molecular Weights

  • 김운천;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1323-1328
    • /
    • 1999
  • Interdiffusion between two partially miscible polymers of similar chemical structures with different molecular weights is characterized theoretically by using the reptation model for the interdiffusion. This model provides more reliable results than the early Rouse model for same molecular weights, compared with the experiments. Furthermore, by introducing the molecular weight ratio R into the reptation model, we can see the dynamic effect of molecular weight on the diffusion behaviors of the asymmetric system. Near the critical point the diffusion behaviors of asymmetric binary polymer mixtures are well characterized by the interfacial width W(t), the mass transport M(t) for the different values of the Flory Χ parameter and different molecular weight ratios ofpolymers of the diffusion couple. These two quantities and composition profiles by this model give betteragreement with experiments.

Natural Halogenated Organic Compounds (천연(天然) Halogen 유기화합물(有機化合物)에 대(對)하여)

  • Han, Koo-Dong
    • Korean Journal of Pharmacognosy
    • /
    • v.7 no.3
    • /
    • pp.159-169
    • /
    • 1976
  • The present review records the known structures of more than 80 organic compounds containing halogens, which may be considered naturally occurring. The format of the review is based on the viewpoint of biochemists. Compounds containing one type of halogen atom have been placed in one of four major division, i.e., structures possessing fluorine, chlorine, bromine or iodine covalently bonded to carbon. Within each major division molecular structures are given along with the species from which the compounds have been isolated, The biological significance, if any, is also mentioned.

  • PDF

Computational Study on the Binding of Aux/IAA17 and ARF5 Involved in Auxin's Transcriptional Regulation using Molecular Docking

  • Kwon, Sohee;Lee, Gyu Rie;Seok, Chaok
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.16-26
    • /
    • 2017
  • Auxin response factor (ARF) and Aux/IAA transcriptional repressor family proteins play a major role in auxin's signalling process. Using the GALAXY protein modelling programs, monomer, dimer and oligomer structures of Aux/IAA17 and ARF5 protein were predicted based on the known experimental structures. By analysing the proposed complex structures, key interacting residues on binding site could be determined, and further suggestions for experimental studies were made.

  • PDF

Theoretical Studies on Electronic Structure and Absorption Spectrum of Prototypical Technetium-Diphosphonate Complex 99mTc-MDP

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Ju, Xue-Hai;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2358-2368
    • /
    • 2011
  • Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, employing the B3LYP method and the LANL2DZ, 6-31G$^*$(LANL2DZ for Tc), 6-31G$^*$(cc-pVDZ-pp for Tc) and DGDZVP basis sets, have been performed to investigate the electronic structures and absorption spectra of the technetium-99m-labeled methylenediphosphonate ($^{99m}Tc$-MDP) complex of the simplest diphosphonate ligand. The bonding situations and natural bond orbital compositions were studied by the Mulliken population analysis (MPA) and natural bond orbital (NBO) analysis. The results indicate that the ${\sigma}$ and ${\pi}$ contributions to the Tc-O bonds are strongly polarized towards the oxygen atoms and the ionic contribution to the Tc-O bonding is larger than the covalent contribution. The electronic transitions investigated by TDDFT calculations and molecular orbital analyses show that the origin of all absorption bands is ascribed to the ligand-to-metal charge transfer (LMCT) character. The solvent effect on the electronic structures and absorption spectra has also been studied by performing DFT and TDDFT calculations at the B3LYP/6-31G$^*$(cc-pVDZ-pp for Tc) level with the integral equation formalism polarized continuum model (IEFPCM) in different media. It is found that the absorption spectra display blue shift in different extents with the increase of solvent polarity.

Simulations of Self-Assembled Structures in Macromolecular Systems: from Atomistic Model to Mesoscopic Model (고분자 자기조립 구조의 전산 모사: 원자 모델로부터 메조 스케일 모델까지)

  • Huh, June;Jo, Won-Ho
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.453-463
    • /
    • 2006
  • Molecular simulation is an exceptionally useful method for predicting self-assembled structures in various macromolecular systems, enlightening the origins of many interesting molecular events such as protein folding, polymer micellization, and ordering of molten block copolymer. The length scales of those events ranges widely from sub-nanometer scale to micron-scale or to even larger, which is the main obstacle to simulate all the events in an ab initio principle. In order to detour this major obstacle in the molecular simulation approach, a molecular model can be rebuilt by sacrificing some unimportant molecular details, based on two different perspectives with respect to the resolution of model. These two perspectives are generally referred to as 'atomistic' and 'mesoscopit'. This paper reviews various simulation methods for macromolecular self-assembly in both atomistic and mesoscopic perspectives.

Molecular Design for the Formation of Two-dimensional Molecular Networks: STM Study of ${\gamma}$-phenylalanine on Au(111)

  • Jeon, A-Ram;Youn, Young-Sang;Lee, Hee-Seung;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.205-205
    • /
    • 2011
  • The self-assembly of ${\gamma}$-phenylalanine on Au(111) at 150 K was investigated using scanning tunneling microscopy (STM). Phenylalanine can potentially form two-dimensional (2D) molecular networks through hydrogen bonding (through the carboxyl and amino groups) and ${\pi}-{\pi}$ stacking interactions (via aromatic rings). We found that ${\gamma}$-phenylalanine molecules self-assembled on Au(111) surfaces into well-ordered structures such as ring-shaped clusters (at low and intermediate coverages) and 2D molecular domains (intermediate and monolayer coverages), whereas ${\alpha}$-phenylalanine molecules formed less-ordered structure on Au(111). The self-assembly of ${\gamma}$- but not ${\alpha}$-phenylalanine may be related to the flexibility of the carboxyl and amino groups in the molecule. Moreover, as expected, the 2D molecular network of ${\gamma}$-phenylalanine on Au(111) was mediated by a combination of hydrogen bonding and ${\pi}-{\pi}$ stacking interactions.

  • PDF

In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye;Kim, Gee-Hye;Kim, Jae-Won;Pyeon, Hee Jang;Lee, Jae Cheoun;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.790-796
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.