• Title/Summary/Keyword: molecular structures

Search Result 1,348, Processing Time 0.028 seconds

MOLECULAR BASIS OF LUBRICATION

  • Hsu, S.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.49-50
    • /
    • 2002
  • Rapid advancements in analytical instrumentations and techniques in the last several decades offer an unprecedented opportunity to analyze the complex chemistry and probe the surfaces for chemical evidence. Recent developments in nanotechnology provide further ability to examine phenomena and mechanisms at the nanometer level. As a result of these advances, our understanding of the complex lubrication system has improved significantly. This paper will attempt to provide a molecular basis of how lubricant and additives function in lubrication.

  • PDF

Molecular chaperone as a sophisticated intracellular membership (세포내인자로서의 정교한 기능을 하는 molecular chaperone)

  • 권오유;송민호
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.223-233
    • /
    • 1998
  • Discovery of molecular chaperone has stimulate cell biologists and thus made it possible to re-examine the processes whereby proteins achieve and maintain their functional conformations within living cells. the term ‘Molecular chaperone’ was first coined to describe one particular protein involved in the assembly of nucleosomes, but the term has now been extended to describe the function of a wide variety of proteins that assist protein transport across membranes, folding of nascent polypeptide, the assembly and disassembly of oligomeric structures, and the recovery or removal of proteins damaged by various environmental stresses including heat shock. Progress of molecular chaperone research is still limited by the lack of 3-dimensional structural information and detailed interacts with taget proteins in the cell. However, several laboratories around the world are attempting to extend our knowledge on the functions of molecular chaperone, and such efforts seem justified to finally provide the answers to the most burning questions shortly.

  • PDF

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • Atomistic molecular dynamics (MD) simulation has become mature enabling close approximation of the real behaviors of biomolecules. In biomolecular NMR field, atomistic MD simulation coupled with generalized implicit solvent model (GBIS) has contributed to improving the qualities of NMR structures in the refinement stage with experimental restraints. Here all-atom force fields play important roles in defining the optimal positions between atoms and angles, resulting in more precise and accurate structures. Despite successful applications in refining NMR structure, however, the research that has studied the influence of force fields in GBIS is limited. In this study, we compared the qualities of NMR structures of two model proteins, ubiquitin and GB1, under a series of AMBER force fields-ff99SB, ff99SB-ILDN, ff99SB-NMR, ff12SB, and ff13-with experimental restraints. The root mean square deviations of backbone atoms and packing scores that reflect the apparent structural qualities were almost indistinguishable except ff13. Qualitative comparison of parameters, however, indicates that ff99SB-ILDN is more recommendable, at least in the cases of ubiquitin and GB1.

NMR Data of Flavone Derivatives and Their Anti-oxidative Activities

  • Park, Yeong-Hui;Lee, Yong-Uk;Kim, Ho-Jung;Lee, Young-Shim;Yoon, Young-Ah;Mun, Byeong-Ho;Jeong, Yu-Hun;An, Jung-Hun;Shim, Yhong-Hee;Lim, Yoong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1537-1541
    • /
    • 2006
  • The $^1H$ and $^{13}C$ chemical shifts of eleven flavone derivatives were completely determined by basic 1D and 2D NMR experiments. Nineteen flavone derivatives including the above eleven derivatives were examined for anti-oxidative effects using the 1,1-diphenyl-2-picryl-hydrazyl assay and Caenorhabditis elegans. In order to understand the relationships between the structures of flavone derivatives and their anti-oxidative activities, a Comparative Molecular Field Analysis was performed.

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.

Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties

  • Xu, Jie;Wang, Lei;Liang, Guijie;Bai, Zikui;Wang, Luoxin;Xu, Weilin;Shen, Xiaolin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2531-2536
    • /
    • 2010
  • Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of two dyes containing diphenylaniline and 4-diphenylamino-diphenylaniline as donor moiety (TPA1 and TPA3). The geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating capability of 4-diphenylamino-diphenylaniline is stronger than that of diphenylaniline. The computed highest occupied molecular orbital (HOMO) energy levels are -5.31 and -4.90 eV, while the lowest unoccupied molecular orbital (LUMO) energies are -2.29 and -2.26 eV for TPA1 and TPA3, respectively, revealing that the interfacial charge transfer between the dyes and the semiconductor electrode are electron injection processes from the photon-excited dyes to the semiconductor conduction band. Furthermore, all the experimental absorption bands of TPA1 and TPA3 have been assigned according to the TDDFT calculations.

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Gamma camera/MR dual imaging liposome labeled with radioisotope and paramagnetic ions

  • Kim, Youn Ji;Kim, Jonghee;Lee, Woonghee;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Liposomes are defined as spherical, self-closed structures formed by lipid bilayers containing aqueous phase. Most liposomes are composed of various amphipathic lipids such as phospholipids and cholesterol. We used amphipathic lipids (DPPC, DPPG) as liposome components and prepared around 100 nm liposomes by standard extrusion method. Nuclear/MR dual imaging agents based on liposome platform were prepared by adding radioactive $^{131}I$-HIB (hexadecyl-4-tributylstannylbenzoate) and Gd-DTPA into liposome bilayer and inside liposome, respectively. Gamma camera and MR imaging both showed signal increases in liver.