• 제목/요약/키워드: molecular similarity indices

검색결과 57건 처리시간 0.034초

1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea 유도체의 제초활성과 분자 유사성 (Herbicidal Activity and Molecular Similarity of 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea Derivatives)

  • 성민규;박관용;송종환;성낙도
    • Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.219-222
    • /
    • 2008
  • 제3세대 제초성 cyclic imide 유도체를 탐색하기 위하여 peroxidizing 제초제로써 40개의 1-(4-chloro-2-fluoro-5-pro-pargyloxypheny)-3-thiourea 유도체(1-40) 중, 3-R-치환체의 발아 전 벼(Oryza sativa)와 논피(Echinochlo crusglli)에 대한 평균 제초활성 값들을 제시하였다. 그리고 Urea 유도체(1-40)와 protox 효소의 기질분자인 protogen사이의 분자구조 유사성을 검토하였다. 논피에 대하여 선택성을 나타내는 화합물은 diallyl-치환체(20)와 3-nitro-치환체(33)이었으며 allyl-치환체(8)가 가장 큰 제초활성$(pI_{50}=4.71)$과 유사성 지수(S=0.81) 값을 나타내었다. 그리고 aryl-치환체(21-40)와 Protogen 사이의 중첩된 부피(C)와 S값 사이에 상관성이 좋았다.

제초성 N-치환 phenyl-3,4-dimethylmaleimide 유도체의 정량적인 구조-활성관계와 분자 유사성 (Quantitative structure-activity relationships and molecular shape similarity of the herbicidal N-substituted phenyl-3,4-dimethylmaleimide Derivatives)

  • 성낙도;옥환석;정헌준;송종환
    • 농약과학회지
    • /
    • 제7권2호
    • /
    • pp.100-107
    • /
    • 2003
  • 일련의 새로운 N-치환-phenyl-3,4,5,6-tetrahydrophthalimide 유도체를 합성하여 $R_2=Sub.X$ 치환기들의 변화에 따르는 발아 전, 벼(Oryza sativa L.)와 논피(Echinochloa crus-galli) 의 줄기와 뿌리에 대한 생장 저해활성 $(pI_{50})$과의 관계 (QSAR)는 물론, 기질 유도체와 protox의 기질인 protogen 분자 사이의 구조적인 분자 유사성을 연구하였다. 두 초종간 및 부위별, 생장 저해활성은 비례관계를 보였으며 벼 보다는 논피에 대하여 약간 강한 저해활성을 나타내었다. QSAR식으로부터 논피의 생장 저해활성은 기질 분자중 음으로 하전된 원자들의 표면적이 클수록 증가하므로 $R_2=Sub.X$ 치환기로서 전자 밀게가 치환되어야 할 것으로 추측되었다. 또한, 기질 유도체와 protogen 분자 사이의 유사성을 검토한 결과, 기질 유도체들의 유사성 지수(S)는 대략 0.8 이상으로 비교적 큰 유사성을 나타내었으나 두 초종의 생장 저해활성과의 상관성은 낮은 편이었다.

3D-QSAR of Non-peptidyl Caspase-3 Enzyme Inhibitors Using CoMFA and CoMSIA

  • Lee, Do-Young;Hyun, Kwan-Hoon;Park, Hyung-Yeon;Lee, Kyung- A.;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.273-276
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationship studies for a series of isatin derivatives as a nonpeptidyl caspase-3 enzyme inhibitor were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The first approach of non-peptidyl small molecules by 3D QSAR may be useful in guiding further development of potent caspase-3 inhibitors.

Comparative Molecular Similarity Indices Analysis of CXCR-2 Inhibitors

  • B, Sathya.
    • 통합자연과학논문집
    • /
    • 제9권3호
    • /
    • pp.177-184
    • /
    • 2016
  • CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils and it regulates the neutrophilic inflammation in the lung diseases. CXCR2 antagonist may reduce the neutrophil chemotaxis and alter the inflammatory response. Hence, in the present study, ligand based Comparative Molecular Similar Indices Analysis (CoMSIA) was performed on a series of CXCR2 antagonist named pyrimidine-5-carbonitrile-6-alkyl derivatives. The optimum CoMSIA model was obtained with statistically significant cross-validated coefficients ($q^2$) of 0.582 and conventional coefficients ($r^2$) of 0.987 with steric, electrostatic, hydrophobic, donor and acceptor fields. The contour maps suggest the important structural modifications and this study can be used to guide the development of potent CXCR2 antagonist.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor

  • Park, Joon-Ho;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1241-1248
    • /
    • 2011
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) between new thiosemicarbazone analogues (1-31) as a substrate molecule and their inhibitory activity against tyrosinase as a receptor were performed and discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. According to the optimized CoMSIA 2 model obtained from the above procedure, inhibitory activities were mainly dependent upon H-bond acceptor favored field (36.5%) of substrate molecules. The optimized CoMSIA 2 model, with the sensitivity of the perturbation and the prediction, produced by a progressive scrambling analysis was not dependent on chance correlation. From molecular docking studies, it is supposed that the inhibitory activation of the substrate molecules against tyrosinase (PDB code: 1WX2) would not take place via uncompetitive inhibition forming a chelate between copper atoms in the active site of tyrosinase and thiosemicarbazone moieties of the substrate molecules, but via competitive inhibition based on H-bonding.

고추역병균에 대한 2-N-benzyl-5-Phenoxy-3-isothiazolone 유도체의 살균활성에 관한 비교분자 유사성 지수분석(CoMSIA)과 홀로그램 구조-활성 관계(HQSAR) (Comparative molecular similarity indices analyses (CoMSIA) and hologram quantitative structure activity relationship (HQSAR) on the fungicial activity of 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives against phytophthora blight fungus)

  • 성낙도;김기현
    • 농약과학회지
    • /
    • 제6권3호
    • /
    • pp.209-217
    • /
    • 2002
  • Metalaxyl 살균제 저항성(RPC)과 감수성(SPC) 고추역병균주(Phytaphthora capsici)들에 대한 2-N-benzyl-5-phenoxy-3-isothiazolone 유도체들의 살균활성을 비교분자 유사성 지수분석(CoMSIA)과 홀로그램 구조-활성 관계(HQSAR) 방법으로 분석하였다. 두 균주의 살균활성에 대한 PLS 계산결과, 교차 확인값($q^2$)과 Pearson 상관계수($r^2$) (CoMSIA: RPC; $q^2=0.675,\;r^2=0.942$, SPC; $q^2=0.350,\;r^2=0.876$ 및 HQSAR: RPC; $q^2=0.519,\;r^2=0.869$, SPC; $q^2=0.483,\;r^2=0.990$)를 비교한 바, 두 방법 모두 양호한 분석 결과를 나타내었다. 그리고 CoMSIA 등고도로부터 특히, RPC에 대한 선택적인 살균활성 요소는 phenoxy-기의 meta, para(C1-C6) 위치에 소수성이 작고 입체적으로 크지 않은 H-결합 받게가 치환 될 경우이었으며 CoMSIA 보다는 HQSAR 방법이 높은 예측성을 나타내었다.

3D-QSAR Study of Competitive Inhibitor for Acethylcholine Esterase (AChE) Nerve Agent Toxicity

  • San Juan, Amor A.;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.216-221
    • /
    • 2006
  • The cholinesterase-inhibiting organophosphorous (OP) compounds known as nerve agents are highly toxic. The principal toxic mechanism of OP compounds is the inhibition of acethylcholine esterase (AChE) by phosphorylation of its catalytic site. The reversible competitive inhibition of AChE may prevent the subsequent OP intoxication. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the relationship between the 29 compounds with structural diversity and their bioactivities against AChE. In particular, predictive models were constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results indicate reasonable model for CoMFA ($q^{2}=0.453,\;r^{2}=0.697$) and CoMSIA ($q^{2}=0.518,\;r^{2}=0.696$). The presence of steric and hydophobic group at naphtyl moiety of the model may lead to the design of improved competitive inhibitors for organophosphorous intoxication.

Molecular modeling of COX-2 inhibitors: 3D-QSAR and docking studies

  • Kim, Hye-Jung;Chae, Chong-Hak;Yoo, Sung-Eun;Yi, Kyu-Yang;Park, Kyung-Lae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.65.2-65.2
    • /
    • 2003
  • 88 selective COX-2 inhibitors belonging to three chemical classes (triaryl rings, diaryl cycloalkanopyrazoles, and diphenyl hydrazides) were studied using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Partial least squares analysis produced statistically significant models with q values of 0.84 and 0.79 for CoMFA and CoMSIA, respectively. The key spatial properties were detected by careful analysis of the isocontour maps. The binding energies calculated from flexible docking correlated with inhibitory activities by the least-squares fit method. (omitted)

  • PDF

Quantitative Structure Activity Relationship between Diazabicyclo-[4.2.0]octanes Derivatives and Nicotinic Acetylcholine Receptor Agonists

  • Kim, Eun-Ae;Jung, Kyoung-Chul;Sohn, Uy-Dong;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.55-59
    • /
    • 2009
  • Three dimensional quantitative structure activity relationship between diazabicyclo[4.2.0]octanes and nicotinic acetylcholine receptor($h{\alpha}4{\beta}2$ and $h{\alpha}3{\beta}4$) agonists was studied using comparative molecular field analysis(CoMFA) and comparative molecular similarity indices analysis(CoMSIA). From 11 CoMFA and CoMSIA models, CoMSIA with steric and electrostatic fields gave the best predictive models($q^2=0.926$ and 0.945, ${r^2}_{ncv}=0.983$ and 0.988). This study can be used to develop potent $h{\alpha}4{\beta}2$ receptor agonists with low activity on $h{\alpha}3{\beta}4$ subtype.