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Abstract

CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils and it regulates the neutrophilic

inflammation in the lung diseases. CXCR2 antagonist may reduce the neutrophil chemotaxis and alter the inflammatory

response. Hence, in the present study, ligand based Comparative Molecular Similar Indices Analysis (CoMSIA) was

performed on a series of CXCR2 antagonist named pyrimidine-5-carbonitrile-6-alkyl derivatives. The optimum CoMSIA

model was obtained with statistically significant cross-validated coefficients (q2) of 0.582 and conventional coefficients

(r2) of 0.987 with steric, electrostatic, hydrophobic, donor and acceptor fields. The contour maps suggest the important

structural modifications and this study can be used to guide the development of potent CXCR2 antagonist.
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1. Introduction

Chemokines are small 8-10 kDa which act through

G-protein-coupled receptors (GPCRs) to regulate a vari-

ety of effects, including cell migration and inflamma-

tory events. Chemokines have long been implicated in the

initiation and amplification of inflammatory responses

by their role in leukocyte chemotaxis[1,2]. They are cur-

rently seven known CXCR receptor found in mammals

named CXCR1-CXCR7. CXCR2 (also called CD182,

IL8) is found on many cells including leukocytes,

endothelial and epithelial cells[3,4] and plays a critical role

in the regulation of neutrophil homeostasis[5]. CXCR2

receptor may have a broad functional role in number of

acute and chronic diseases and can be released from a

number of inflammatory and structural cell types.

CXCR2 is also expressed by neutrophil precursors in

the bone marrow that can be released during systemic

inflammation. It plays an important role in asthma,

chronic obstructive pulmonary disease (COPD) and

fibrotic pulmonary disorders[6-8]. It was found that neu-

trophilic inflammation in the lung diseases is found to

be largely regulated through CXCR2[2,9]. In some can-

cers, such as prostate cancer, CXCR2 is expressed by

early premalignant cells, but downregulated during tumor

progression. Therefore blockade of CXCR2 substantially

reduces tissue damage, leukocyte recruitment, and mor-

tality. An antagonist of CXCR2 reduces neutrophilic

chemotaxis and may alter the airway inflammation. To

date, there are no CXCR2 receptor antagonists approved

for use in humans. However, several pharmaceutical

companies have disclosed CXCR2 antagonists and

amongst these, navarixin and AZD-5069 are noteworthy.

When 3D structure of the macromolecular target is

not available 3D-QSAR is the prominent computational

means to support chemistry within drug design pro-

jects[10] and is demonstrated in many studies[11-14].

Hence, in the present 3D QSAR method, CoMSIA

model was generated utilizing pyrimidine-5-carboni-

trile-6-alkyl derivatives as CXCR2 antagonist. The five

CoMSIA models were developed with the different

combinations of steric, electrostatic, hydrophobic, donor

and acceptor fields. The CoMSIA model was graphi-

cally interpreted by a field contribution map which pro-

vides guidelines for the design of new compounds with

enhanced activity and specificity.
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2. Materials and Methods

2.1. Data set

The structure and biological activities of 26 com-

pounds named pyrimidine-5-carbonitrile-6-alkyl deriv-

atives were taken from the literature[15]. Biological

activities i.e. IC50 of these compounds was converted

into pIC50 (-logIC50) in order to use in CoMSIA analysis

as the dependent variable. The dataset (26 compounds)

was segregated into test (5 compounds) and training set

Table 1. Structures and biological activities (pIC50) of CXCR2 inhibitors

Cmpd no Structure pIC50 values Cmpd no Structure pIC50 values

1 5.432 14 5.432

2 5.130 15 5.824

3 5.854 16 8.000

4 6.148 17 8.222

5 5.795 18 8.155

6 5.337 19 6.292

7 6.107 20 5.318
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(21 compounds). The training and test sets were clas-

sified to ensure that both sets could completely cover

the whole range of biological activity and structural

diversity. The structures and their activity pIC50 values

are displayed in Table 1.

2.2. Structural Alignment

The structure of 26 CXCR2 inhibitors was drawn

using sketch molecule function in SYBYL-X2.1[16] ver-

sion and its partial atomic charge were assigned using

Gasteiger-Huckel method. The highly active molecule

(compound 17) among the dataset was selected as tem-

plate and its bioactive conformation was searched

through systematic search analysis. The lowest energy

conformer of the highly active molecule was assumed

to be the bioactive conformation and it was used to

Table 1. Continued

Cmpd no Structure pIC50 values Cmpd no Structure pIC50 values

8 5.327 21 5.193

9 5.366 22 4.522

10 6.045 23 5.000

11 5.309 24 6.495

12 5.769 25 5.854

13 6.853 26 5.495
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align all the compounds. The aligned molecules were

subsequently used for CoMSIA analysis. The alignment

of all molecules is represented in Fig. 1.

2.3. CoMSIA Analysis 

CoMSIA has better ability to visualize and interpret

the field contributions such as steric, electrostatic,

hydrophobic, hydrogen bond donor and acceptor fields.

These five physico-chemical properties were evaluated

within a 3D grid using a common probe atom[17]. CoM-

SIA similarity indices for molecule j with atom i at a

grid point q were calculated using the following equa-

tion:

where k represents the following physicochemical prop-

erties: steric, electrostatic, hydrophobic, H-bond donor,

and H-bond acceptor. Gaussian-type distance depend-

ence with default attenuation factor of 0.3 was assumed

in the CoMSIA calculation. 

2.4. PLS Analysis and Predictive Correlation

Coefficient

In 3D-QSAR, CoMSIA descriptors were used as

independent variables and pIC50 values were used as the

dependent variable. Partial least squares (PLS)

method[18] was used to explore a linear correlation

between the CoMSIA fields and the biological activity

values. For the calculation of steric and electrostatic

fields, the cutoff values were set to 30 kcal⁄mol, and all

fields were scaled by the default options. Leave one out

cross validation (LOO)[19] was used to perform the

regression analysis. The cross-validation correlation

coefficient (q2) that resulted in a minimal number of

components and the lowest cross-validated standard

error of estimate was considered for further analysis and

calculated using the formula:

where γpred, γactual, and γmean are the predicted,

actual, and mean values of the target property (pIC50),

respectively. CoMSIA results were then graphically

interpreted by field contribution maps.

To derive the predictive power of 3D-QSAR models,

test set molecules which were excluded during model

development was used. The model derived from train-

ing set was used to predict the activity of the test set.

The following formula was used to determine the pre-

dictive correlation coefficient r2pred of the developed

model.

where, SD is defined as the sum of the square deviation

between the biological activity of the test set com-

pounds and the mean activity of the training set mole-

cules and PRESS is the sum of the squared deviation

between the predicted and actual activity of the test set

molecules.

3. Results and Discussions

In the present work, we have generated CoMSIA

model for CXCR2 inhibitors (pyrimidine-5-carbonitrile-

6-alkyl derivatives). Statistical values like q2, r2, SEE,

F value and r2pred were calculated for different fields.

The best predictions were obtained for CoMSIA model

(q2 = 0.582, r2 = 0.987). 
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Fig. 1. Superimposed structure of all molecules based on

atom by atom matching alignment.
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3.1. CoMSIA Statistical Analysis

CoMSIA analysis was carried out to evaluate the

steric, electrostatic, hydrophobic, donor and acceptor

properties. Many different CoMSIA models were gen-

erated with different combinations of training and test

set and the best model was selected based on their sta-

tistical results. The statistical result of CoMSIA models

was given in Table 2. For the selected model leave one

out analysis gave the cross-validated q2 of 0.582 with

six components and non-cross-validated PLS analysis

resulted in a correlation coefficient r2 of 0.987, F =

154.549, and an estimated standard error of 0.127. The

contribution of the steric, electrostatic, hydrophobic,

donor and acceptor fields were 10%, 40%, 20&, 16%

and 14% respectively. This indicates the electrostatic

field contributes more than other fields. Good correla-

tion was observed between the predicted and experi-

mental activities indicating the goodness of the model.

Predicted, experimental activities (pIC50) and their

residual values of all inhibitors are shown in Table 3. 

3.2. Mapping of CoMSIA Contour Map 

The CoMSIA contour map was generated for the best

model and it is shown in Fig. 2. This shows the regions

where steric, electrostatic, hydrophobic, H-bond donor

and acceptor features of the different molecules con-

tained in the training set leads to increase or decrease

in the activity. In Fig. 2(a) steric contour has green con-

tour which indicates region where a bulky group

Table 2. Statistical results of CoMSIA models

PLS statistics Model 1 Model 2 Model 3 Model 4 Model 5

q2 0.485 0.563 0.628 0.473 0.582

N 3 6 6 6 6

r2 0.947 0.990 0.985 0.985 0.987

SEE 0.231 0.114 0.140 0.136 0.127

F-value 89.959 193.353 127.394 134.979 154.549

r2pred 0.525 0.711 0.695 0.587 0.765

 Field contribution

Steric 0.209 0.143 0.161 0.186 0.095

Electrostatic 0.791 0.555 0.579 0.545 0.404

Hydrophobic - 0.302 - - 0.190

Donor - - 0.260 - 0.167

Acceptor - - - 0.269 0.142

q2= cross-validated correlation coefficient; N= number of statistical components; r2= non-cross validated correlation

coefficient; SEE=standard estimated error; F=Fisher value; r2predictive= predictive correlation coefficient for test set.

Table 3. Predicted activities of CoMSIA model compared

with the experimental pIC50 values

S.No
Actual 

pIC50

Predicted 

pIC50

Residual

1. 5.432 5.649 -0.218

2. 5.130 5.755 -0.625

3. 5.854 5.789 0.065

4. 6.148 5.917 0.231

5. 5.795 5.762 0.033

6. 5.337 5.485 0.148

7. 6.107 6.085 0.022

8. 5.327 5.200 0.127

9. 5.366 6.154 -0.788

10. 6.045 6.064 -0.019

11. 5.309 5.417 -0.108

12. 5.769 5.782 -0.013

13. 6.853 5.996 0.857

14. 5.432 5.497 -0.066

15. 5.824 5.785 0.038

16. 8.000 8.029 -0.029

17. 8.222 8.178 0.048

18. 8.155 7.693 0.046

19. 6.292 6.165 0.127

20. 5.318 5.552 -0.234

21. 5.193 5.115 0.078

22. 4.522 4.506 0.016

23. 5.000 4.902 0.098

24. 6.495 6.584 -0.089

25. 5.854 5.822 0.032

26. 5.495 5.728 -0.233
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increases the activity and yellow contours indicates a

bulky group decreases the activity. The green steric con-

tour explains the presence of bulky cyclopropyl ring

attached to pyrimidine ring and the bulky benzyl

attached to sulfur makes the compound potent with

higher activity. Hence bulky groups in those positions

are favorable. We have observed that the compounds

which does not have bulky cyclopropyl ring have lower

activity. The electrostatic contour in Fig. 2(b) shows

blue and red contour indicating the regions where an

electropositive and electronegative group increases the

activity. The red colored region indicates the electron-

Fig. 2. CoMSIA contour maps for compound 17. (a) Steric contour map (b) Electrostatic contour map(c) Hydrophobic

contour map (d) H-bond donor contour map (e) H-bond acceptor contour map.
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egative atom in ortho and meta position of benzyl

attached to sulfur is favorable in increasing the activity.

Fig. 2(c) represents the hydrophobic contour map,

where yellow indicates the region where the hydropho-

bic substitutions are favorable for activity and white

contour indicates the disfavored region for inhibitory

activity. The presence of hydrophobic atoms around

benzyl ring and the presence of hydrophilic atoms

around cyclopropyl ring are highly favorable in enhanc-

ing the activity. In Fig. 2(d), H-bond donor contour

depicts the cyan indicating region where hydrogen bond

donor substituents enhance activity and purple indicat-

ing hydrogen bond donor substituents reduces activity.

H-bond acceptor contour in Fig. 2(e) represents the

magenta and red color which indicates where hydrogen

bond acceptor group increases and decreases the activ-

ity. The presence of hydrogen bond donor and acceptor

groups in cyclopropyl ring could contribute to the inhib-

itory activity of CXCR2 inhibitors.

4. Conclusion

The CoMSIA contour map gives valuable informa-

tion to understand 3D-QSAR relationships between the

structures and their biological activity. The contour

maps suggest the presence of bulky and hydrogen bond

donor and acceptor group in the cyclopropyl ring and

bulky electronegative atoms in benzyl ring could

improve the activity of these compounds. The informa-

tion obtained from 3D-QSAR study could be useful for

improving and predicting the activities of new CXCR2

antagonists.
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