Browse > Article

Herbicidal Activity and Molecular Similarity of 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea Derivatives  

Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Park, Kwan-Yong (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Song, Jong-Hwan (Korea Research Institute of Chemical Technology)
Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Applied Biological Chemistry / v.51, no.3, 2008 , pp. 219-222 More about this Journal
Abstract
In the search for third generation herbicidal cyclic imide derivatives, the average values of herbicidal activity ($pI_{50}$) in vivo (pre-emergence) of 40 new peroxidizing herbicides, 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)thiourea derivatives (1-40) against rice plant (Orysa sativa) and barnyard grass (Echinochlor crus-galli) were studied. The molecular similarity between protoporphyrinogen IX (protogen) as the substrate of protox enzyme and Urea derivatives (1-40) was discussed quantitatively. The diallyl (20) and 3-nitro substituent (33) showed the selective herbicidal activity against barnyard grass. Allyl substituent (8) and their molecular similarity in dice (S=0.81) showed the highest levels of herbicidal activity ($pI_{50}$=4.71). Also, similarity indices (S) and superimposed volume (C) of protogen and aryl-substituents (21-40) showed good correlation.
Keywords
1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea derivatives; average herbicidal activities ($pI_{50}$); molecular similarity indice;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Uraguchi, R., Sato, Y., Nakayama, A., Sukekaya, M., Iwataki, I., Boger, P. and Wakabayashi, K. (1997) Molecular Shape Similarity of Cyclic Imides and Protoporphyrinogen IX. J. Pesticide Sci. 22, 314-320   DOI
2 Nandihalli, U. B., Duke, M. Y. and Duke, S. O. (1992) Quantitative structure-activity relationships of protoporphyrinogen oxidase-inhibiting diphenyl ether herbicides, Pestic. Biochem. Physiol., 43, 193-211   DOI
3 Park, K. Y., Song, J. H., Jeon, D. J., Soung, M. G. and Sung N. D. (2008) Synthesis and herbicidal activity of new 1-(4-chloro-2-fluoro-5-propargyl-oxyphenyl)-3-thiourea derivatives. Korean J. Pesticide Sci., 12, 103-110   과학기술학회마을
4 Atlamazoglou, V., Thireou, T. and Eliopoulos, E. (2007) Using a pharmacophore representation concept to elucidate molecular similarity of dopamin antagonists. J. Comput. Aided Des. 21, 239-249   DOI
5 Rupp, M., Proschak, E. and Schneider, G. (2007) Kernel approach to molecular similarity based on iterative graph similarity. J. Chem. Inf. Model. 47, 2280-2286   DOI   ScienceOn
6 Peltason, L. and Bajorath, J. (2007) Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chem. Biol. 14, 489-497   DOI   ScienceOn
7 Esteki, M., Henmateenejad, B., Khayamian, T. and Mohajeri, A. (2007) Multi-way analysis of quantum topological molecular similarity descriptors for modeling acidity constant of some phenolic compounds. Chem. Biol. Drug Des. 70, 413-423   DOI   ScienceOn
8 Meyer, A. Y. and Richards, W. G. (1991) Similarity of molecular shape. J. Comput. Aided Mol. Des. 5, 427-439   DOI
9 Tripos Sybyl. (2001) Molecular modeling and QSAR software on CD-Rom (Ver. 8.0) Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303 St. Louis, MO. 63144-2913, U.S.A
10 Clark, M., Cramer III, R. D., Jones, D. M., Patterson, D. E. and Simeroth, P. E. (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput. Methodol. 3, 47-59   DOI
11 Lajiness, M. S. (1996) Applications of molecular similarity/ dissimilarity in drug research., In Structure-property correlations in drug research (Waterbeemd, Han van de ed.), Ch. 6, pp. 180-205
12 Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design. The conformational parameter in drug design; Active analog approach.. (ed. Olsen, E. C. & Christoffersen, R. E.), American Chemical Society, Washington, D.C., pp. 205-226
13 Fujita, T. and Nakayama, A. (1999) In Peroxidizing herbicides (Boger, P. and Wakabayashi, K. eds.), Structure-activity relationship and molecular design of peroxidizing herbicides which cyclic imide structures and their relatives. pp. 91-139. Springer, Heidelberg
14 Jeon, D. J., Kim, Y. M., Park, K. Y., Kim, H. R., Song, J. H., Hwang, I. T. and Ryu, E. K. (2001) Synthesis and herbicidal activities of 2-(5-propargyloxy-phenyl)-4,5,6,7-tetrahydro-2H-indazole and their related derivatives. Korean J. Pesticide Sci. 5, 68-71
15 Sung, N. D., Kim, C. H., Jin, D. L. and Park, C. S. (2004) The search of pig pheromonal odorants for biostimulation control system technologies: I. Ligand based molecular shape similarity of 5$\alpha$-androst-16-en-3-one analogues and their physicochemical parameters. Reprod. Dev. Biol. 28, 45-52
16 Bielinska-Waz, B., Nowak, W., Peplowski, L., Waz, P., Basak, S. C. and Natarajan, R. (2008) Statistical spectroscopy as a tool for the study of molecular similarity. J. Math. Chem., 43, 1560-1572   DOI
17 Sung, N. D., Ock, H. S., Chung, H. J. and Song, J. H. (2003) Quantitative structure-activity relationships and molecular shape similarity of the herbicidal N-substituted phenyl-3,4-dimethylmaleimide derivatives. Korean J. Pesticide Sci. 7, 100-107