• 제목/요약/키워드: molecular processes

검색결과 1,225건 처리시간 0.033초

B16F10 흑색종 세포의 이동과 침윤에 미치는 동의보감 "유암" 처방에 근거한 한약복합처방들의 영향 (Influence of Herb-combined Remedies Based on "Yooam" Prescription of Dongeuibogam on Migration and Invasion of B16F10 Melanoma Cells)

  • 최은옥;권다혜;황보현;김민영;지선영;홍수현;박철;황혜진;최영현
    • 대한한의학방제학회지
    • /
    • 제26권3호
    • /
    • pp.223-236
    • /
    • 2018
  • Objectives : We compared the inhibitory effects of herb-combined remedies, which were recorded on "Yooam" prescription of Dongeuibogam, on cell migration and invasion, two critical cellular processes that are often deregulated during metastasis, in B16F10 melanoma cells. For this purpose, water extracts of Sipyukmiryukieum (SYMRKU), Danjacheongpitang (DJCPT), Cheongganhaeultang (CGHUT) and Jipaesan (JPS) were used. Methods : Cytotoxicity was assessed by an MTT assay. Wound healing and matrigel transwell assays were used to examine on B16F10 cell migration and invasion. The levels of mRNA and protein expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) were analyzed by RT-PCR and Western blotting. Results : Our data showed that DJCPT showed the strongest inhibitory effect among the four prescriptions in inhibiting cell motility of B16F10 melanoma cells within the concentration range that was not cytotoxic. The inhibitory potential of colony formation was higher in DJCPT and SYMRKU compared to the other two types of prescriptions, and the inhibitory effect of invasiveness is shown in order of DJCPT, SYMRKU, CGHUT and JPS. DJCPT, and SYMRKU strongly inhibited the activity and expression of MMP-2 and MMP-9, which are important mediators in cancer invasion, compared to CGHUT and JPS, and the increased expression of TIMP-1 and TIMP-2 was also more effective in these two prescriptions. In conclusion, DJCPT is expected to exhibit the most potent blocking effect on migration and invasion among four herb-combined remedies compared in B16F10 melanoma cells. Conclusion : Overall, the results of this study will be used as an important source to validate these prescriptions in animal models and to understand the mechanism of action of herbal remedies recorded in Dongeuibogam.

SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity

  • Luo, Na;Li, Guan;Li, Yongqing;Fan, Xiongwei;Wang, Yuequn;Ye, Xiangli;Mo, Xiaoyan;Zhou, Junmei;Yuan, Wuzhou;Tan, Ming;Xie, Huaping;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.355-362
    • /
    • 2010
  • The sterile alpha motif (SAM) is a putative protein interaction domain involved in a wide variety of biological processes. Here we report the identification and characterization of a novel gene, SAMD4B, which encodes a putative protein of 694 amino acids with a SAM domain. Northern blot and RT-PCR analysis showed that SAMD4B is widely expressed in human embryonic and adult tissues. Transcriptional activity assays show SAMD4B suppresses transcriptional activity of L8G5-luciferase. Over-expression of SAMD4B in mammalian cells inhibited the transcriptional activities of activator protein-1 (AP-1), p53 and p21, and the inhibitory effects can be relieved by siRNA. Deletion analysis indicates that the SAM domain is the main region for transcriptional suppression. The results suggest that SAMD4B is a widely expressed gene involved in AP-1-, p53- and p21-mediated transcriptional signaling activity.

톨라신의 용혈활성에 대한 Ni2+의 저해효과 (Inhibitory Effect of Ni2+ on the Tolaasin-induced Hemolysis)

  • 최태근;왕희성;김영기
    • Journal of Applied Biological Chemistry
    • /
    • 제52권1호
    • /
    • pp.28-32
    • /
    • 2009
  • 세균독소인 톨라신은 재배버섯에서 버섯균사 및 자실체의 구조를 파괴하여 갈반병을 일으킨다. 톨라신의 세포독성은 톨라신이 적혈구의 세포막에 pore를 형성하여 세포구조를 파괴하기 때문에 용혈활성을 측정하여 평가한다. 저자들은 $Zn^{2+}$$Cd^{2+}$에 의한 톨라신의 용혈활성 저해효과를 측정하는 중에 $Ni^{2+}$이 또 다른 저해제로 톨라신의 독성을 억제하는 것을 발견하였다. $Ni^{2+}$에 의한 톨라신 용혈활성의 저해는 농도의존적이었으며, Ki 값은 대략 10mM이었고, 이것은 $Ni^{2+}$$Cd^{2+}$에 비하여 저해효과가 높음을 의미한다. 용혈활성은 50mM 이상의 $Ni^{2+}$농도에서 완전히 제거되었으며, $Ni^{2+}$의 효과는 EDTA 첨가에 의해 가역적임을 확인하였다. 톨라신에 의한 용혈활성이 20mM $Ni^{2+}$에 의해서 완전히 억제된 상태에서 EDTA를 가하면 즉각 용혈활성이 나타났다. $Ni^{2+}$에 의한 톨라신 독성의 저해기작은 알 수 없지만, $Ni^{2+}$은 톨라신의 독성과정인 막결합, 분자중합체 형성, pore 형성, pore를 통한 막대한 양의 이온이동 등에 작용할 수 있을 것이다. 된 연구의 결과는 $Ni^{2+}$이 독성과정의 마지막 단계인 pore를 통한 이온이동 과정을 저해함을 보여준다.

위암 조직내 Metallothionein의 면역 세포화학적 연구 (Immunocytochemical Localization of Metallothionein in Gastric Adenocarcinoma)

  • 양승하;신길상;김완종
    • Applied Microscopy
    • /
    • 제32권4호
    • /
    • pp.411-419
    • /
    • 2002
  • 사람의 위암 조직을 미세구조와 metallothionein (MT)에 대한 면역 조직 및 세포화학적 방법으로 조사하였던 바, 다음과 같은 결과를 얻어냈다. 위암 세포들은 핵 세포질비가 정상세포에 비해 크고, 불규칙한 핵과 이질염색질의 분포가 증가하였으며, 세포질내에서 유리리보솜의 분포가 뚜렷이 증가하였다. 면역 조직 및 세포화학적 방법으로 MT의 발현을 조사하였던 결과, 이 단백질은 위암조직의 암세포에서 반응성이 높게 나타났으며, 주로 핵 부위에 집중되는 경향을 보였으며, 특히 이질염색질과 인 부위에서 면역 금입자들이 주로 분포하는 것으로 관찰되었다. 이러한 결과들은 위암 세포의 미세구조가 미분화세포들이 나타내는 일반적인 특징과 비교되었으며, 위암 세포에서 MT가 증가하는 현상은 이 단백질이 세포질에서 합성되어 핵내로 수송된 후, 세포 증식을 위한 전사과정에 관여할 것임을 시사하는 것이다.

Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation

  • Koh, Eun Mi;Lee, Eun Kyeong;Song, Chi Hun;Song, Jeongah;Chung, Hae Young;Chae, Chang Hoon;Jung, Kyung Jin
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.333-341
    • /
    • 2018
  • Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B $(NF-{\kappa}B)$ activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote $NF-{\kappa}B$ activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and $NF-{\kappa}B$ activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with $NF-{\kappa}B$ activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

Nicotine Suppresses TNF-${\alpha}$ Expression in Human Fetal Astrocyte through the Modulation of Nuclear Factor-${\kappa}B$ Activation

  • Son, Il-Hong;Park, Yong-Hoon;Yang, Hyun-Duk;Lee, Sung-Ik;Han, Sun-Jung;Lee, Jai-Kyoo;Ha, Dae-Ho;Kang, Hyung-Won;Park, Joo-Young;Lee, Sung-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Parkinson's disease (PD) progresses severely by a gradual loss of dopaminergic neurons in the substantia nigra (SN). Epidemiological studies showed that the incidences of PD were reduced by smoking of which the major component, nicotine might be neuroprotective. But the function of nicotine, which might suppress the incidences of PD, is still unknown. Fortunately, recently it was reported that a glial reaction and inflammatory processes might participate in a selective loss of dopaminergic neurons in the SN. The levels of tumour necrosis factor (TNF)-${\alpha}$ synthesised by astrocytes and microglia are elevated in striatum and cerebrospinal fluid (CSF) in PD. TNF-${\alpha}$ kills the cultured dopaminergic neurons through the apoptosis mechanism. TNF-${\alpha}$ release from glial cells may mediate progression of nigral degeneration in PD. Nicotine pretreatment considerably decreases microglial activation with significant reduction of TNF-${\alpha}$ mRNA expression and TNF-${\alpha}$ release induced by lipopholysaccharide (LPS) stimulation. Thus, this study was intended to explore the role of nicotine pretreatment to inhibit the expressions of TNF-${\alpha}$ mRNA in human fetal astrocytes (HFA) stimulated with IL-$1{\beta}$. The results are as follows: HFA were pretreated with 0.1, 1, and $10{\mu}g/mL$ of nicotine and then stimulated with IL-$1{\beta}$ (100 pg/mL) for 2h. The inhibitory effect of nicotine on expressions of TNF-${\alpha}$ mRNA in HFA with pretreated $0.1{\mu}g/mL$ of nicotine was first noted at 8hr, and the inhibitory effect was maximal at 12 h. The inhibitory effect at $1{\mu}g/mL$ of nicotine was inhibited maximal at 24 h. Cytotoxic effects of nicotine were noted above $10{\mu}g/mL$ of nicotine. Moreover, Nicotine at 0.1, 1 and $10{\mu}g/mL$concentrations significantly inhibited IL-$1{\beta}$-induced TF-${\kappa}B$ activation. Collectively, these results indicate that in activated HFA, nicotine may inhibit the expression of TNF-${\alpha}$ mRNA through the pathway which suppresses the NF-${\kappa}B$ activation. This study suggests that nicotine might be neuroprotective to dopaminergic neurons in the SN and reduce the incidences of PD.

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • 제12권3호
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

Revisiting the Parvilucifera infectans / P. sinerae (Alveolata, Perkinsozoa) species complex, two parasitoids of dinoflagellates

  • Jeon, Boo Seong;Nam, Seung Won;Kim, Sunju;Park, Myung Gil
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.1-19
    • /
    • 2018
  • Members of the family Parviluciferaceae (Alveolata, Perkinsozoa) are the well-known dinoflagellate parasitoids along with Amoebophrya ceratii species complex and parasitic chytrid Dinomyces arenysensis and contain six species across three genera (i.e., Parvilucifera infectans, P. sinerae, P. rostrata, and P. corolla, Dinovorax pyriformis, and Snorkelia prorocentri) so far. Among Parvilucifera species, the two species, P. infectans and P. sinerae, are very similar or almost identical each other morphologically and genetically, thereby make it difficult to distinguish between the two. The only main difference between the two species known so far is the number of sporangium wall (i.e., 2 layers in P. infectans vs. 3 layers in P. sinerae). During sampling in Masan bay, Korea during the spring season of 2015, the dinoflagellate Akashiwo sanguinea cells infected by the parasite Parvilucifera were observed and this host-parasite system was established in culture. Using this culture, its morphological and ultrastructural features with special emphasis on the variation in the number of sporangium wall over developmental times, were investigated. In addition, the sequences of rDNA regions and ${\beta}-tubulin$ genes were determined. The result clearly demonstrated that the trophocyte at 36 h was covered with 4 layers, and then outer layer of the sporocyte gradually degraded over time, resulting in wall structure consisting of two layers, with even processes being detached from 7-day-old sporangium with smooth surface, indicating that the difference in the number of layers seems not to be an appropriate ultrastructural character for distinguishing P. infectans and P. sinerae. While pairwise comparison of the large subunit rDNA sequences showed 100% identity among P. infectans / P. sinerae species complex, genetic differences were found in the small subunit (SSU) rDNA sequences but the differences were relatively small (11-13 nucleotides) compared with those (190-272 nucleotides) found among the rest of Parvilucifera species (P. rostrata and P. corolla). Those small differences in SSU rDNA sequences of P. infectans / P. sinerae species complex may reflect the variations within inter- strains of the same species from different geographical areas. Taken together, all morphological, ultrastructural, and molecular data from the present study suggest that they are the same species.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • 한국작물학회지
    • /
    • 제37권3호
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF