• 제목/요약/키워드: molecular processes

Search Result 1,225, Processing Time 0.027 seconds

Alcohol Impairs learning of T-maze Task but Not Active Avoidance Task in Zebrafish

  • Yang, Sunggu;Kim, Wansik;Choi, Byung-Hee;Koh, Hae-Young;Lee, Chang-Joong
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.303-307
    • /
    • 2003
  • The aim of this study is to investigate whether alcohol alters learning and memory processes pertaining to emotional and spatial factors using the active avoidance and T-maze task in zebrafish. In the active avoidance task, zebrafish were trained to escape from one compartment to another to avoid electric shocks (unconditioned stimulus) following a conditioned light signal. Acquisition of active avoidance task appeared to be normal in zebrafish that were treated with 1% alcohol for 30 min for 17 days until the end of the behavioral test, and retention ability of learned behavior, tested 2 days later, was the same as control group. In the T-maze task, the time to find a reservoir was compared. While the latency was similar during the 1 st training session between control and alcohol-treated zebrafish, it was significantly longer in alcohol-treated zebrafish during retention test 24 h later. Furthermore, when alcohol was treated 30 min after 2nd session without prior treatment, zebrafish demonstrated similar retention ability compared to control. These results suggest that chronic alcohol treatment alters spatial learning of zebrafish, but not emotional learning.

Change of Molecular Weight of Organic Matters through Unit Water Treatment Process and Associated Chlorination Byproducts Formation

  • Sohn, Jin-Sik;Kang, Hyo-Soon;Han, Ji-Hee;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.224-230
    • /
    • 2007
  • The objectives of this study were to evaluate the change of molecular weight (MW) profiles in natural organic matter (NOM) through various treatment processes (coagulation, granular activated carbon (GAC), and ozonation) using high performance size exclusion chromatography based on ultraviolet absorbance and dissolved organic detection (HPSEC-UVA-DOC). In addition, relationships between MW profiles and disinfection by-production (DBP) formation were evaluated. Each treatment process results in significant different effects on NOM profiles. Coagulation is effective to remove high molecular weight NOM, while GAC is effective to remove low molecular weight NOM. Ozonation removes only a small portion of NOM, while it induces a significant reduction of UV absorbance due to breakdown of the aromatic groups. All treated waters are chlorinated, and chlorination DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) are measured under formation potential conditions. Both THM and HAA formation potentials were significantly reduced through the coagulation process. GAC was more effective to reduce THM formation compared to HAA formation reduction, while ozonation showed significant HAA reduction compared to THM reduction.

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Estimation of micro-biota in the Upo wetland using eukaryotic barcode molecular markers

  • Park, Hyun-Chul;Bae, Chang-Hwan;Jun, Ju-Min;Kwak, Myoung-Hai
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2011
  • Biodiversity and the community composition of micro-eukaryotic organisms were investigated in the Upo wetland in Korea using molecular analysis. Molecular identification was performed using cytochrome oxidase I (COI) and small subunit ribosomal DNA (SSU rDNA). The genomic DNA was isolated directly from soil samples. The COI and SSU rDNA regions were amplified using universal primers and then sequenced after cloning. In a similarity search of the obtained sequences with BLAST in the Genbank database, the closely related sequences from NCBI were used to identify the amplified sequences. A total of six eukaryotic groups (Annelida, Arthropoda, Rotifera, Chlorophyta, Bacillariophyta, and Stramenopiles) with COI and six groups (Annelida, Arthropoda, Rotifera, Alveolata, Fungi, and Apicomplexa) with SSU rDNA genes were determined in the Upo wetland. Among 38 taxa in 20 genera, which are closely related to the amplified sequences, 10 genera (50%) were newly reported in Korea and five genera (25%) were shown to be distributed in the Upo wetland. This approach is applicable to the development of an efficient method for monitoring biodiversity without traditional taxonomic processes and is expected to produce more accurate results in depositing molecular barcode data in the near future.

IGRINS Observations of Star Forming Clouds in NGC 6822 Hubble V

  • Pak, Soojong;Lee, Hye-In;Le, Huynh Anh N.;Lee, Sungho;Chung, Aeree;Kaplan, Kyle;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.92.2-92.2
    • /
    • 2014
  • NGC 6822 is a dwarf irregular galaxy in the Local Group. Unlike clouds in the Large Magellanic Cloud and the Small Magellanic Cloud, molecular clouds in NGC 6822 are not influenced by the Galactic tidal force. Therefore the star forming processes are only dictated by local conditions. Hubble V is the brightest of the several bright H II region complexes in NGC 6822. The core of Hubble V, surrounded by a molecular cloud complex, contains compact clusters of bright blue stars. During the commissioning runs of the new high-resolution near-infrared spectrometer, IGRINS (Immersion GRating near-INfrared Spectrometer), we observed Hubble V and detected many emission lines from the H II regions and from the photodissociation region at the interface between the ionized gas and the molecular cloud. In this presentation, we report preliminary results of the IGRINS observations. We discuss the implications of the observed lines ratios and kinematics for our understanding of the evolution of star forming molecular clouds.

  • PDF

Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.278-286
    • /
    • 2008
  • Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.

CLIP-domain serine proteases in Drosophila innate immunity

  • Jang, In-Hwan;Nam, Hyuck-Jin;Lee, Won-Jae
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Extracellular proteases play an important role in a wide range of host physiological events, such as food digestion, extracellular matrix degradation, coagulation and immunity. Among the large extracellular protease family, serine proteases that contain a "paper clip"-like domain and are therefore referred to as CLIP-domain serine protease (clip-SP), have been found to be involved in unique biological processes, such as immunity and development. Despite the increasing amount of biochemical information available regarding the structure and function of clip-SPs, their in vivo physiological significance is not well known due to a lack of genetic studies. Recently, Drosophila has been shown to be a powerful genetic model system for the dissection of biological functions of the clip-SPs at the organism level. Here, the current knowledge regarding Drosophila clip-SPs has been summarized and future research directions to evaluate the role that clip-SPs play in Drosophila immunity are discussed.

MicroRNA biogenesis and function in higher plants

  • Jung, Jae-Hoon;Seo, Pil Joon;Park, Chung-Mo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.111-126
    • /
    • 2009
  • MicroRNAs (miRNAs) are endogenous, non-coding, small RNA molecules consisting of 21-24 nucleotides (nts) that regulate target genes at the posttranscriptional level in plants and animals. In plants, miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or translational repression. MiRNAs are processed from single-stranded precursors containing stem-loop structures by a Dicer-like enzyme and are loaded into silencing complexes, where they act on target mRNAs. Although plant miRNAs were first reported in Arabidopsis 10 years later than animal miRNAs, numerous miRNAs have since been identified from various land plants ranging from mosses to flowering plants, and their roles in diverse aspects of plant developmental processes have been characterized. Furthermore, most of the annotated plant miRNAs are evolutionarily conserved in various plants. In particular, recent functional studies using Arabidopsis mutants have contributed a great deal of information towards establishing a framework for understanding miRNA biogenesis and functional roles. Extensive appraisal of miRNA-directed regulation during a wide array of plant development and plant responses to environmental conditions has confirmed the versatile roles of miRNAs as a key component of plant molecular biology.

Effects of Irradiation Crosslinking and Molecular Weight Properties on Crosslinked PP Foaming Process (전자선 조사량과 분자량 특성이 전자선 가교 PP 발포 가공에 미치는 영향)

  • 홍다윗;윤광중;백운선;정영헌;이준길
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.508-515
    • /
    • 2002
  • The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well.