• Title/Summary/Keyword: molecular monitoring

Search Result 397, Processing Time 0.025 seconds

Resistance Monitoring and Analysis of Point Mutations to λ-cyhalothrin, Imidacloprid, and Flupyradifurone in Field-collected Populations of Myzus persicae (Hemiptera: Aphididae) (복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid, 그리고 flupyradifurone에 대한 저항성 모니터링과 점 돌연변이 분석)

  • Ha Hyeon Moon;Yuno Lee;Dong-Hyun Kang;Se Eun Kim;Hyun Kyung Kim;Hyun-Na Koo;Gil-Hah Kim
    • Korean journal of applied entomology
    • /
    • v.63 no.1
    • /
    • pp.33-42
    • /
    • 2024
  • The green peach aphid, Myzus persicae is a representative agricultural insect pest that is polyphagous and causes serious damage to tobacco, potatoes, peppers, cabbage, and peaches. In this study, we analyzed the level of development of insecticide resistance to λ-cyhalothrin, imidacloprid, and flupyradifurone and the point mutations (R81T, L1014F, M918L) in 12 field populations of M. persicae. In addition, the expression level of CYP6CY3, a cytochrome P450 gene, was analyzed through qRT-PCR. As a result, λ-cyhalothrin showed high resistance ratio (RR) of > 200 in all 12 populations. Imidacloprid and flupyradifurone showed high RR of >200 in YS, UR, HY, and WJ populations. The R81T was detected in approximately 50%, L1014F in approximately 33.3%, and M918L in 100% of the 12 populations. Additionally, the expression level of subunit CYP6CY3 was highest in imidacloprid-resistant population (YS). These results suggest that M918L point mutation can be used as λ-cyhalothrin-resistance molecular diagnostic and R81T point mutation and the high expression of CYP6CY3 can be used as imidacloprid-resistance molecular diagnostic markers.

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

Soluble Expression of Recombinant Olive Flounder Hepcidin I Using a Novel Secretion Enhancer

  • Lee, Sang Jun;Park, In Suk;Han, Yun Hee;Kim, Young Ok;Reeves, Peter R.
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • Expression of olive flounder hepcidin I (HepI) fused with truncated OmpA signal peptides ($OmpASP_{tr}$) as directional signals does not produce soluble fusion proteins. However, by inserting amino acid segments (xxx) varying in pI and hydrophobicity/hydrophilicity into a leader sequence containing a truncated OmpASP ($OmpASP_{tr}$) and a factor Xa cleavage site (Xa) [$OmpASP_{tr}{\mid}(xxx){\mid}Xa$], we were able in some cases to express soluble recombinant HepI. Soluble expression of the recombinant protein strongly correlated with (xxx) insertions of high pI and hydrophilicity. Therefore, we modified the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence by inserting Arg and Lys into (xxx) to increase the hydrophilicity of the signal peptide region. These modifications enhanced the expression of soluble recombinant HepI. Hydropathic profile analysis of the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ HepI fusion proteins revealed that the transmembrane-like domains derived from the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence were larger than the internal positively charged domain native to HepI. It should therefore be possible to overcome the obstacle of internal positively charged domains to obtain soluble expression of recombinant proteins by monitoring the hydrophilicity and hydropathic profile of the signal peptide region using a computer program.

Occurrence of Mycotoxins and Toxigenic Fungi in Groundnut (Arachis hypogaea L.) Seeds in Andhra Pradesh, India

  • Kishore, G.Krishna;Pande, S.;Manjula, K.;Rao, J.Narayana;Thomas, D.
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.204-209
    • /
    • 2002
  • Andhra Pradesh is one of the major groundnut growing states in India. A total of 182 groundnut samples collected at harvesting from farmers fields in five districts, namely; Anantapur, Chittoor, Cuddapah, Kurnool, and Mahaboobnagar, during 1999 and 2000 rainy seasons were evaluated for the presence of mycotoxins (both aflatoxins and zearalenone) and toxigenic fungi. In samples collected from each district, average seed infection by Aspergillus flavus and Fusarium spp. was 11.9-18.3% and 5.6-12.8% in 1999, and 9.5-14.1% and 9.4-11.9% in 2000, respectively. Among the samples collected, 20.3% and 16.5% were contaminated with aflatoxin in 1999 and 2000, respectively, and in 11.4% and 8.7% of the seed samples collected in two seasons, the aflatoxin content was >30 $\mu\textrm{g}$/kg. An alarming aflatoxin content of 851.9$\mu\textrm{g}$/kg was found in samples collected from Anantapur district during the rainy season in 1999. Zearalenone was not detected in any of the samples collected in 1999, while 2 out of 103 samples collected in 2000 were contaminated with 35.1 and 129.4$\mu\textrm{g}$/kg. Under in vitro cultural conditions, 35.8% of the 173 A. flavus isolates collected from the groundnut samples produced aflatoxins at concentrations of 94.3-1598.6 ng/$\textrm{m}{\ell}$ and 3% of the 266 Fusarium spp. isolates produced 98.1-847.3 $\mu\textrm{g}$/g of zearalenone. The results emphasize the need for a more systematic and regular monitoring of pre-harvest aflatoxin contamination.

Seasonal Dynamics of Pathogenic Microorganisms (Cryptosporidium, Giardia and Fecal Bacteria) in an Artificial Lake Ecosystem (Sangsa Lake, Korea)

  • Kim, Sung-Hyun;Kim, Hyun-Woo;Lee, Hak-Young;Kahng, Hyung-Yeel
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.161-165
    • /
    • 2008
  • This study was performed for the purpose of monitoring monthly levels of two pathogenic microorganisms, Cryptosporidium and Giardia, from November 2005 to August 2007 in Sangsa Lake. Water temperatures, pH and DO fluctuated seasonally at the study site. Annual mean values of BOD, COD and SS were $0.8\;mg\;L^{-1}$, $2.3\;mg\;L^{-1}$ and $1.9\;mg\;L^{-1}$ respectively. Although there was distinct seasonal variation in water chemistry and chlorophyll $\underline{a}$ concentration, the lake generally contains low concentrations of nutrients and chlorophyll $\underline{a}$. The relative abundance of coliform bacteria was always greater than that of fecal coliform. The fecal coliform bacteria comprised $8.5{\sim}22.1%$ of total coliform bacteria. Seasonal analysis of Cryptosporidium and Giardia levels in the study site showed that in winter (November through February), Cryptosporidium oocysts and Giardia cysts were most abundant ($1.1{\sim}1.8\;{\times}\;10\;cells\;L^{-1}$ and $3.8{\sim}5.1\;{\times}\;10\;cells\;L^{-1}$, respectively), while in summer (July through September) the abundance was lowest ($0.0{\sim}0.3\;{\times}\;10\;cells\;L^{-1}$ and $0.9{\sim}2.9\;{\times}\;10\;cells\;L^{-1}$, respectively). Molecular identification revealed two subtypes of Cyrptosporidium parvum in Sangsa Lake.

Rapid and exact molecular identification of the PSP (paralytic shellfish poisoning) producing dinoflagellate genus Alexandrium

  • Kim, Choong-jae;Kim, Sook-Yang;Kim, Kui-Young;Kang, Young-Sil;Kim, Hak-Gyoon;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.132-133
    • /
    • 2003
  • The marine dinoflagellate genus Alexandrium comprise PSP producing A. acatenella, A. angustitabuzatum, A. catenella, A. fundyense, A. minutum, A. ostenfezdii, A. tamiyavanichii and A. tamarense. In monitoring toxic Alexandrium, rapid and exact species identification is one of the significant prerequisite work, however we have suffered confusion of species definition in Alexandrium. To surmount this problem, we chose DNA probing, which has long been used as an alternative for conventional identification methods, primarily relying on morphological approaches using microscope in microbial field. Oligonucleotide DNA probes targeting rRNA or rDNA have been commonly used in diverse studies to detect and enumerate cells concerned as a culture-indetendent powerful tool. Despite of the massive literature on the HAB species containing Alexandrium, application of DNA probing for species identification and detection has been limited to a few documents. DNA probes of toxic A. tamarense, A. catenella and A. tamiyavanichii, and non-toxic A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax were designed from LSU rDNA D1-D2, and applied to whole cell-FISH. Each DNA probes reacted only the targeted Alexandrium cells with very high species-specificity within Alexandrium. The probes could detect each targeted cells obtained from the natural sea water samples without cross-reactivity. Labeling intensity varied in the growth stage, this showed that the contents of probe-targeted cellular rRNA decreased with reduced growth rate. Double probe TAMID2S1 achieved approximately two times higher fluorescent intensity than that with single probe TAMID2. This double probe did not cross-react with any kinds of microorganisms in the natural sea waters. Therefore we can say that in whole-cell FISH procedure this double DNA probe successfully labeled targeted A. tamiyavanichii without cross-reaction with congeners and diverse natural bio-communities.

  • PDF

Use of Pyrosequencing for Characterizing Microbial Community at Phylum Level in Yeongsan River Watershed during Early Summer (Pyrosequencing을 이용한 하절기 영산강 유역의 Phylum 계층의 세균 군집 조사)

  • Chung, Jin;Park, Sang Jung;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We have conducted pyrosequencing for freshwater microbial community analyses. Fourteen sites along the Yeongsan river were selected for this study, and samples were collected monthly from May to July, 2012. Total 987,380 reads were obtained from 42 samples and used for taxonomic classification and OTU distribution analysis. Our results showed that high geographical and temporal variation in the phylum level bacterial composition, suggesting that microbial community is a very sensitive parameter affected by the surrounding environments including tributaries and land use nearby. In addition, we conducted an OTU-based Microbial Source Tracking to identify sources of fecal pollution in the same region. From this study Firmicutes was found to be the most influential taxa in this region. Here, we report that the use of pyrosequencing based microbial community analysis may give an additional information on freshwater quality monitoring, in addition to the currently used water quality parameters, such as BOD and pH.

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Gibberellins Production and Identification of Endophytic Fungi Isolated from Aquatic Plant in Fresh Water (담수에 자생하는 수생식물에서 분리된 내생균류의 지베렐린 생산과 동정)

  • You, Young-Hyun;Kang, Sang-Mo;Choi, Yu-Mi;Lee, Myung-Chul;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.71-76
    • /
    • 2015
  • Aquatic plant Hydrocharis dubia (Blume) Backer was collected from the Dalsung wetland in Daegu. Sixteen endophytic fungi with different colony morphologies were isolated from the roots of aquatic plants. Waito-c rice (WR) seedlings were treated with fungal culture filtrates (FCF) for screening plant growth-promoting activity. In the results, HD1008 strain isolated from aquatic plant showed highest plant growth-promoting activity. The FCF of HD1008 strain was analyzed using gas chromatography mass spectrometry (GC/MS) with selected ion monitoring (SIM). Analysis of the FCF of HD1008 strain found that it contained gibberellins (GA) ($GA_1$, 1.2 ng/100 mL; $GA_4$, 5 ng/100 mL). Phylogenetic tree of HD1008 strain was constructed by partial internal transcribed spacer (ITS) region and partial beta-tubulin gene sequences. Therefore, we describe HD1008 strain as a new gibberellin-producing Penicillium trzebinskii based on morphological and molecular characteristics.

Two-Dimensional Patterning of Bacteria by Inkjet Printer (잉크젯 프린터를 이용한 박테리아의 이차원 패터닝)

  • Yoon, Seong-Hee;Lee, Seul-Gi;Cho, Myoung-Ock;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2010
  • Patterning bacteria and cells on substrates has potential applications in molecular biology, antimicrobial drug screening, environmental monitoring and tissue engineering. We developed a technique to deposit two-dimensional array of bacterial cells onto an agar plate by modifying commercially available thermal inkjet printers. The concentration of the bacterial solution in the cartridge was carefully determined to ensure a single cell suspension in a droplet ejected from a nozzle. We measured quantitatively the effects of the bacterial concentration and the agar concentration on patterning performance. Bacterial patterning by inkjet printer is a low-cost and versatile technique which may replace the existing sophisticated methods.