• 제목/요약/키워드: molecular monitoring

검색결과 396건 처리시간 0.032초

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon;Park, Sun-Young;Choi, Jin-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.54-59
    • /
    • 2006
  • The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.

Gas Chromatography/Mass Spectrometry and Gas Chromatography/Tandem Mass Spectrometry of some s-Triazine Pesticides

  • Kim, Yoo-Joong;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권2호
    • /
    • pp.196-200
    • /
    • 1989
  • Some s-triazine herbicides, namely simazine, atrazine, and propazine present as trace components in a complex mixture were analyzed by GC/MS and GC/MS/MS methods. Even though monitoring the molecular ions was the best in terms of sensitivity, adequate analysis could not be done when interfering species were present. When doubly charged ions which appeared at characteristic m/z values were monitored, chromatograms were rather free from interference. More importantly, selected reaction monitoring was found to provide a selective means of detection with general applicability.

Novel Cell-based Protease Assay System for Molecular Cell Biology and Drug Discovery

  • Hwang, Hyun-Jin;Kim, Jeong-Hee;Park, Joon-Woo;Kim, Sung-Hee;Lee, Min-Jeon;Jeong, Han-Seung;Hwang, In-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.169.1-169.1
    • /
    • 2003
  • Recently development of cell-based assay systems which are useful in molecular cell biology and drug discovery attracts significant attention. Here, we introduce a new technologies for monitoring enzyme activity and its inhibition inside living cells. Among various enzymes, proteases are important targets for studying various biological and disease-related processes such as viral infections, apoptosis and Alzheimer's disease. In this study, a sensitive cell-based protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells is introduced. (omitted)

  • PDF

Radiolabeled single-domain antibody for tumor receptor imaging

  • Moon, Yeajin;Lee, Ju Young;Ryoo, Woonseok;Seo, Seung-Yong
    • 대한방사성의약품학회지
    • /
    • 제6권1호
    • /
    • pp.39-45
    • /
    • 2020
  • Recently, single-domain antibodies (sdAb) are bioengineered for molecular imaging applications. Single-domain antibody, obtained from naturally occurring antibodies in camelid species and cartilaginous fish is the smallest fully functional antigen-binding antibody fragments of heavy-chain. Since their discovery, they have been investigated extensively in clinical therapeutics, monitoring and diagnostics. Their small size is important advantage for high solubility, high stability, fast blood clearance and rapid targeting. This review article summarizes the recent status of this new antibody to visualize, diagnose or inhibit specific targets of cancer.

MicroSPECT and MicroPET Imaging of Small Animals for Drug Development

  • Jang, Beom-Su
    • Toxicological Research
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2013
  • The process of drug discovery and development requires substantial resources and time. The drug industry has tried to reduce costs by conducting appropriate animal studies together with molecular biological and genetic analyses. Basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination using suitable animal models of disease. However, in the past two decades new technologies have been developed that permit the imaging of live animals using radiotracer emission, X-rays, magnetic resonance signals, fluorescence, and bioluminescence. The main objective of this review is to provide an overview of small animal molecular imaging, with a focus on nuclear imaging (single photon emission computed tomography and positron emission tomography). These technologies permit visualization of toxicodynamics as well as toxicity to specific organs by directly monitoring drug accumulation and assessing physiological and/or molecular alterations. Nuclear imaging technology has great potential for improving the efficiency of the drug development process.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • 제48권1호
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

S100A12 and RAGE Expression in Human Bladder Transitional Cell Carcinoma: a Role for the Ligand/RAGE Axis in Tumor Progression?

  • Khorramdelazad, Hossein;Bagheri, Vahid;Hassanshahi, Gholamhossein;Karami, Hormoz;Moogooei, Mozhgan;Zeinali, Masoud;Abedinzadeh, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2725-2729
    • /
    • 2015
  • Background: Transitional cell carcinoma (TCC) and prostate cancer are the most frequent cancers in the male genitourinary tract. Measurement of biological biomarkers may facilitate clinical monitoring and aid early diagnosis of TCC. The aim of the present investigation was to detect the mRNA levels of S100A12 and RAGE (receptor for advanced glycation end products) in patients suffering from bladder TCC. Materials and Methods: To explore the involvement of S100A12 and RAGE genes, total RNA was harvested from cancer tissues and samples obtained from normal non-tumorized urothelium of the same patients. Quantitative PCR (qPCR) was subsequently employed to determine the mRNA levels of S100A12 and RAGE. Results: The results showed that mRNA expression of S100A12 and RAGE was significantly up-regulated in the cancer tissue. Conclusions: According to the results presented in the current study, mRNA expression of S100A12 and RAGE might be as a useful biomarker for TCC. Therefore, this ligand-receptor axis possibly plays important roles in the development of TCC and may serve either as an early diagnostic marker or as a key factor in monitoring of response to treatment. More research is required concerning inhibition of the S100A12-RAGE axis in different cancer models.

지표생물의 독성물질 반응 행동에 대한 수리적 평가 (Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials)

  • 전태수;지창우
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권4호
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Molecular profiling of 18S rRNA reveals seasonal variation and diversity of diatoms community in the Han River, South Korea

  • Muhammad, Buhari Lawan;Lee, Yeon-Su;Ki, Jang-Seu
    • Journal of Species Research
    • /
    • 제10권1호
    • /
    • pp.46-56
    • /
    • 2021
  • Diatoms have been used in examining water quality and environmental change in freshwater systems. Here, we analyzed molecular profiling of seasonal diatoms in the Han River, Korea, using the hypervariable region of 18S V1-V3 rRNA and pyrosequencing. Physicochemical data, such as temperature, DO, pH, and nutrients showed the typical seasonal pattern in a temperate region. In addition, cell counts and chlorophyll-a, were recorded at high levels in spring compared to other seasons, due to the diatom bloom. Metagenomic analysis showed a seasonal variation in the phytoplankton community composition, with diatoms as the most frequently detected in spring (83.8%) and winter (69.7%). Overall, diatom genera such as Stephanodiscus, Navicula, Cyclotella, and Discostella were the most frequent in the samples. However, a large number of unknown Thalassiosirales diatoms were found in spring (35.5%) and winter (36.3%). Our molecular profiling revealed a high number of diatom taxa compared to morphological observation. This is the first study of diatoms in the Han River using molecular approaches, providing a valuable reference for future study on diatoms-basis environmental molecular monitoring and ecology.