Browse > Article
http://dx.doi.org/10.22643/JRMP.2020.6.1.39

Radiolabeled single-domain antibody for tumor receptor imaging  

Moon, Yeajin (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Lee, Ju Young (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Ryoo, Woonseok (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Seo, Seung-Yong (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.6, no.1, 2020 , pp. 39-45 More about this Journal
Abstract
Recently, single-domain antibodies (sdAb) are bioengineered for molecular imaging applications. Single-domain antibody, obtained from naturally occurring antibodies in camelid species and cartilaginous fish is the smallest fully functional antigen-binding antibody fragments of heavy-chain. Since their discovery, they have been investigated extensively in clinical therapeutics, monitoring and diagnostics. Their small size is important advantage for high solubility, high stability, fast blood clearance and rapid targeting. This review article summarizes the recent status of this new antibody to visualize, diagnose or inhibit specific targets of cancer.
Keywords
single-domain antibody; camelid VHH; cancer; molecular imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Herschman HRJS. Molecular imaging: looking at problems, seeing solutions. 2003;302(5645):605-8.   DOI
2 Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40(3):167-81.   DOI
3 Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77-83.   DOI
4 Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446-8.   DOI
5 Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1-3):178-83.   DOI
6 De Meyer T, Muyldermans S, Depicker A. Nanobodybased products as research and diagnostic tools. Trends Biotechnol. 2014;32(5):263-70.   DOI
7 Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Theranostics. 2014;4(4):386-98.   DOI
8 D'Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708-20.   DOI
9 Menon JU, Gulaka PK, McKay MA, Geethanath S, Liu L, Kodibagkar VD. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Theranostics. 2012;2(12):1199-207.   DOI
10 Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy. 2011;3(3):349-70.   DOI
11 Lemaire M, D'Huyvetter M, Lahoutte T, Van Valckenborgh E, Menu E, De Bruyne E, et al. Imaging and radioimmunotherapy of multiple myeloma with antiidiotypic Nanobodies. Leukemia. 2014;28(2):444-7.   DOI
12 Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, et al. Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol. 2013;40(1):52-9.   DOI
13 Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis C, Apostolaki S, et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404-12.   DOI
14 Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine. 2016;8:40-8.   DOI
15 Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011;25(7):2433-46.   DOI
16 Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165-77.   DOI
17 Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, Mitera T, et al. SPECT imaging of joint inflammation with Nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013;54(5):807-14.   DOI
18 Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927-37.   DOI
19 Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, et al. SPECT imaging with $^{99m}Tc$labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10(3):167-75.   DOI
20 Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11(1):33-46.
21 Chatalic KL, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, et al. A Novel (1)(1)(1)In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. J Nucl Med. 2015;56(7):1094-9.   DOI
22 Xavier C BA, Vaneycken I, D'Huyvetter M, Heemskerk J, Lahoutte T, Devoogdt N, Caveliers V. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol. 2016;43:247-52.   DOI
23 Vosjan MJ, Perk LR, Roovers RC, Visser GW, Stigter-van Walsum M, van Bergen En Henegouwen PM, et al. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging. 2011;38(4):753-63.   DOI
24 Evazalipour M, D'Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, et al. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging. 2014;9(3):211-20.   DOI
25 Xavier C VI, D'Huyvetter M, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776-84.   DOI
26 Keyaerts M XC, Heemskerk J, et al. Phase I study of 68Ga-HER2- Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27-33.   DOI
27 Bala G, Crauwels M, Blykers A, Remory I, Marschall ALJ, Dubel S, et al. Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis - impact of radiochemistry on pharmacokinetics. Biol Chem. 2019;400(3):323-32.   DOI
28 D'Huyvetter M DVJ, Xavier C, et al. 131I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res. 2017;23:6616-28.   DOI
29 Vaidyanathan G MD, Choi J, et al. Preclinical evaluation of 18F-labeled anti-HER2 Nanobody conjugates for imaging HER2 receptor expression by immuno-PET. J Nucl Med. 2016;57:967-73.   DOI
30 Pruszynski M KE, Vaidyanathan G, et al. Improved tumor targeting of anti-HER2 Nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med. 2014;55:650-6.   DOI
31 A. Broisat ea. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110:927-37.   DOI
32 Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol. 2015;209(5):633-44.   DOI
33 Movahedi K SS, Laoui D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165-77.   DOI
34 Blykers A SS, Xavier C, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled Camelid single-domain antibody fragments. J Nuclear Medicine. 2015;56:1265-71.   DOI
35 Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775-97.   DOI
36 Nguyen VK, Zou X, Lauwereys M, Brys L, Bruggemann M, Muyldermans S. Heavy-chain only antibodies derived from dromedary are secreted and displayed by mouse B cells. Immunology. 2003;109(1):93-101.   DOI
37 Zou X, Smith JA, Nguyen VK, Ren L, Luyten K, Muyldermans S, et al. Expression of a dromedary heavy chain-only antibody and B cell development in the mouse. J Immunol. 2005;175(6):3769-79.   DOI
38 Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A, San JK, et al. Generation of heavychain-only antibodies in mice. Proc Natl Acad Sci U S A. 2006;103(41):15130-5.   DOI