• 제목/요약/키워드: molecular mechanism

검색결과 2,744건 처리시간 0.031초

Characterization of Aspartate Aminotransferase Isoenzymes from Leaves of Lupinus albus L. cv Estoril

  • Martins, Maria Luisa Louro;De Freitas Barbosa, Miguel Pedro;De Varennes E Mendonca, Amarilis Paula Alberti
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.220-227
    • /
    • 2002
  • Two aspartate aminoransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT-2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8,0 and 9.0) and temperature ($60-65^{\circ}C$) were similar for both isoenzymes. In the temperature range of $45-65^{\circ}C$, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

DED Interaction of FADD and Caspase-8 in the Induction of Apoptotic Cell Death

  • Park, Young-Hoon;Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.1034-1040
    • /
    • 2022
  • Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.

ρ-알루미나결합 알루미나 캐스터블의 용융슬래그에 의한 침식기구 (Kinetics and Mechanism of Corrosion of ρ-alumina Bonded Alumina Castable by Molten Slag)

  • 천승호;전병세
    • 한국세라믹학회지
    • /
    • 제40권10호
    • /
    • pp.1015-1020
    • /
    • 2003
  • $\rho$-알루미나 결합 진동성형용 알루미나 캐스터블 내화물의 매트릭스부분과 용응 슬래그와의 침식거동을 젭센(Jabsen)이 주장한 이론을 기초로 하고 킹거리(Kingery)가 제안한 반응 기구를 통해 규명하였다. 매트릭스 부분의 초기침식이 분자확산거동에 의하여 지배되며, 아레니우스 관계식과 잘 일치하고 있어 온도의존성 활성화 과정으로 받아들 수 있다. 슬래그와 경계층의 Ca 농도차이가 23.2%로서 경계층을 형성하기 위한 물질이동의 구동력이 되었다. 매트릭스의 침식정도가 뮬라이트 소결체보다 심하지만 킹거리의 침식반응 기구와 잘 일치하고 있어 캐스터블의 수명예측이 가능하다.

Microscopic damping mechanism of micro-porous metal films

  • Du, Guangyu;Tan, Zhen;Li, Zhuolong;Liu, Kun;Lin, Zeng;Ba, Yaoshuai;Ba, Dechun
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1388-1392
    • /
    • 2018
  • Metal thin films are used widely to solve the vibration problem. However, damping mechanism is still not clear, which limits the further improvement of the damping properties for film and the development of multi-functional damping coating. In this paper, Damping microscopic mechanism of porous metal films was investigated at both macroscopically and microscopically mixed levels. Molecular dynamics simulation method was used to model and simulate the loading-unloading numerical experiment on the micro-pore and vacancy model to get the stress-strain curve and the microstructure diagram of different defects. And damping factor was calculated by the stress-strain curve. The results show that dislocations and new vacancies appear in the micro-pores when metal film is stretched. The energetic consumption from the motion of dislocation is the main reason for the damping properties of materials. Micro-mechanism of damping properties is discussed with the results of in-situ experiment.

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Thimerosal generates superoxide anion by activating NADPH oxidase: a mechanism of thimerosal-induced calcium release

  • Kim, Eui-Kyung;Ryu, Sung-Ho;Suh, Pann-Ghill
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권4호
    • /
    • pp.229-235
    • /
    • 2002
  • Thimerosal, a widely used preservative, has been well known to induce intracellular calcium mobilization in various cell types. However, the mechanism of its calcium mobilization is not clearly understood yet. For studying the mechanism of thimerosal-mediated calcium release, we have used HL60 cells in calcium-free Lockes solution that has no extracellular calcium. Thimerosal significantly reduced the lag period of initial calcium release whereas it enhanced the rate and magnitude of the calcium release in a dose-dependent manner. At the same time, we found that thimerosal generated superoxide anion by activating NADPH oxidase in dose- and time-dependent manner. Interestingly, the kinetics and the dosedependency of superoxide anion generation were very similar to those of intracellular calcium mobilization. In inhibitors study, the thimerosal-induced superoxide anion generation was significantly suppressed by DMSO as well as superoxide dismutase but not by genistein or EGTA. Surprisingly, the pretreatment with N-Acetyl-$_{L}$-Cysteine blocked almost completely the thimerosal-induced calcium increase, indicating that ROS playa key role in the calcium mobilization. The present results suggest that thimerosal-induced calcium mobilization is possibly mediated by the activation of NADPH oxidase and subsequent ROS generation.n.

  • PDF

제올라이트와 분자체 촉매에서 메탄올 전환 반응의 기구 (Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts)

  • 서곤;민병구
    • Korean Chemical Engineering Research
    • /
    • 제44권4호
    • /
    • pp.329-339
    • /
    • 2006
  • 원유가 급등으로 메탄올에서 저급 올레핀을 제조하는 공정에 대한 관심이 높아지고 있다. 제올라이트와 SAPO 분자체 촉매에서 메탄올의 탄화수소로 전환 반응을 저급 올레핀 생성 단계에 중점을 두고 고찰하였다. 구조가 명확한 중간체를 근거로 하는 직접(direct) 반응기구와 구조가 애매한 탄화수소 뭉치를 활성점으로 보는 탄화수소 활성체(hydrocarbonpool) 반응기구의 합리성을, 메탄올 전환 반응의 유도기간, 생성물의 선택성, 활성 저하 등과 연계지어 비교하였다. 탄화수소 활성체의 구조 규명과 메탄올 전환 반응에서 촉매 활성점으로서 기능에 대한 1999년 이후 연구 결과를 검토하였으며, 메탄올에서 저급 올레핀을 생산하는 공정에 대한 전망도 기술하였다.

Functional Roles of Exosomes in Allergic Contact Dermatitis

  • Bocui Song;Qian Chen;Yuqi Li;Shuang Zhan;Rui Zhao;Xue Shen;Min Liu;Chunyu Tong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1506-1514
    • /
    • 2022
  • Allergic contact dermatitis (ACD) is an allergen-specific T-cell-mediated inflammatory response, albeit with unclear pathogenesis. Exosomes are nanoscale extracellular vesicles secreted by several cell types and widely distributed in various biological fluids. Exosomes affect the occurrence and development of ACD through immunoregulation among other ways. Nevertheless, the role of exosomes in ACD warrants further clarification. This review examines the progress of research into exosomes and their involvement in the pathogenesis, diagnosis, and treatment of ACD and provides ideas for exploring new diagnostic and treatment methods for this disease.