• Title/Summary/Keyword: molecular mechanics

Search Result 147, Processing Time 0.022 seconds

Determination of Contact Area of Cylindrical Nanowire using MD Simulation (MD 시뮬레이션을 이용한 실린더 형태 나노와이어의 접촉면적에 관한 연구)

  • Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Contact between solid surfaces is one of the most important factors that influence dynamic behavior in micro/nanoscale. Although numerous theories and experimental results on contact behavior have been proposed, a thorough investigation for nanomaterials is still not available owing to technical difficulties. Therefore, molecular dynamics simulation was performed to investigate the contact behavior of nanomaterials, and the application of conventional contact theories to nanoscale was assessed in this work. Particularly, the contact characteristics of cylindrical nanowires were examined via simulation and contact theories. For theoretical analysis, various contact models were utilized and work of adhesion, Hamaker constant and elastic modulus those are required for calculation of the models were obtained from both indentation simulation and tensile simulation. The contact area of the cylindrical nanowire was assessed directly through molecular dynamics simulation and compared with the results obtained from the theories. Determination of the contact area of the nanowires was carried out via simulation by counting each atom, which is within the equilibrium length. The results of the simulation and theoretical calculations were compared, and it was estimated that the discrepancy in the results calculated between the simulation and the theories was less than 10 except in the case of the smallest nanowires. As the result, it was revealed that contact models can be effectively utilized to assess the contact area of nanomaterials.

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers

  • Wang, Yun-Che;Wu, Chun-Yi;Chen, Chi;Yang, Ding-Shen
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.329-344
    • /
    • 2014
  • In this work, quantum molecular dynamics simulations (QMD) are preformed to study the hydrogen molecules in three types of carbon nanostructures, $C_{60}$ fullerene, (5,5) and (9,0) carbon nanotubes and graphene layers. Interactions between hydrogen and the nanostructures is of importance to understand hydrogen storage for the development of hydrogen economy. The QMD method overcomes the difficulties with empirical interatomic potentials to model the interaction among hydrogen and carbon atoms in the confined geometry. In QMD, the interatomic forces are calculated by solving the Schrodinger's equation with the density functional theory (DFT) formulation, and the positions of the atomic nucleus are calculated with the Newton's second law in accordance with the Born-Oppenheimer approximation. It is found that the number of hydrogen atoms that is less than 58 can be stored in the $C_{60}$ fullerene. With larger carbon fullerenes, more hydrogen may be stored. For hydrogen molecules passing though the fullerene, a particular orientation is required to obtain least energy barrier. For carbon nanotubes and graphene, adsorption may adhere hydrogen atoms to carbon atoms. In addition, hydrogen molecules can also be stored inside the nanotubes or between the adjacent layers in graphite, multi-layer graphene.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Theoretical Studies on the Biochemical Roles of Zn (Zn 의 생화학적 역할에 관한 이론적 연구)

  • Kim, Ho Sun;Kim, Gwang Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.232-238
    • /
    • 1990
  • To study the biological roles of Zn, we investigated simple model systems of $Zn^{++}, coordinated with OH_2 or NH_3,$ or with O=C- in peptide. The geometrical structures and net atomic charges were calculated by the ab initio HF-SCF theory using double zeta basis sets. The ligands of O-H, N-H, and O=C- are very polar due to $Zn^{++}$. Therefore, the carbon atom in peptide becomes so electrophilic that it can be easily attacked by other nucleophiles. In addition, to understand how $Zn^{++}$ is coordinated with ligands in enzyme, a molecular mechanics method is applied to the system of the enzyme of carboxypeptidase A (CPA) with the substrate of glycyltyrosine. From our results, it appears that the Zn ion is coordinated not only by four ligands in enzyme and substrate but also by one water molecule.

  • PDF

Theoretical Investigation on the Structure, Detonation Performance and Pyrolysis Mechanism of 4,6,8-Trinitro-4,5,7,8-tetrahydro -6H-furazano[3,4-f]-1,3,5-triazepine

  • Li, Xiao-Hong;Zhang, Rui-Zhou;Zhang, Xian-Zhou
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1479-1484
    • /
    • 2014
  • Based on the full optimized molecular geometric structures at B3LYP/cc-pvtz method, a new designed compound, 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine was investigated in order to look for high energy density compounds (HEDCs). The analysis of the molecular structure indicates that the seven-membered ring adopts chair conformation and there exist intramolecular hydrogen bond interactions. IR spectrum and heat of formation (HOF) were predicted. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that $N_1-N_6$ bond is the trigger bond. The crystal structure obtained by molecular mechanics belongs to $Pna2_1$ space group, with lattice parameters Z = 4, a = 15.3023 ${\AA}$, b = 5.7882 ${\AA}$, c = 11.0471 ${\AA}$, ${\rho}=2.06gcm^{-3}$. In addition, the analysis of frontier molecular orbital shows the title compound has good stability and high chemical hardness.

Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations (그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.393-399
    • /
    • 2013
  • In this paper, a novel approach to estimate cohesive laws for the mode I fracture of the graphene is presented by combining molecular dynamic simulations and an inverse algorithm based on field projection method and finite element method. The determination of crack-tip cohesive laws of the graphene based on continuum mechanics is a non-trivial inverse problem of finding unknown tractions and separations from atomic simulations. The displacements of molecular dynamic simulations in a region far away from the crack tip are transferred to finite element nodes by using moving least square approximation. Inverse analyses for extracting unknown cohesive tractions and separation behind the crack tip can be carried out by using conservation nature of the interaction J- and M-integrals with numerical auxiliary fields which are generated by systematically imposing uniform surface tractions element-by-element along the crack surfaces in finite element models. The preset method can be a very successful approach to extract crack-tip cohesive laws from molecular dynamic simulations as a scale bridging method.

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF