• 제목/요약/키워드: molecular imaging

검색결과 816건 처리시간 0.026초

분자영상의 윤리 및 규제 (Ethical and Regulatory Problems of Molecular Imaging)

  • 정재민
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.140-142
    • /
    • 2004
  • As a molecular imaging is the most up-to-date technology in Nuclear Medicine, it has complicate ethical and regulatory problems. For animal experiment, we have to follow institutional animal care committee. for clinical experiment, we have to get approval of Institutional Review Board according to Helsinki declaration. In addition, approval from Korea Food and Drug Administration (KFDA) is essential for manufacturing and commercialization. However, too much regulation would suppress development of new technology, which would result in the loss of national competitive power. In addition, most new radioactive ligands for molecular imaging are administered to human at sub-pharmacological and sub-toxicological level. In conclusion, a balanced regulation is essential for the safety of clinical application and development of new technology.

A novel tricyclic derivative for PET imaging of the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.37-42
    • /
    • 2016
  • The translocator protein (TSPO) has attracted scientist's attention for Positron Emission Tomography (PET) imaging due to correlation with brain cancer, stroke, and neurodegeneration. Recently, GE-180, a novel tricyclic derivative has been developed as a new high affinity agent for the TSPO and evaluated to confirm a possibility for the TSPO ligand. In this highlight review, several studies for the novel TSPO radiotracer are described.

핵의학적 리포터 유전자 영상 (Radionuclide Reporter Gene Imaging)

  • 민정준
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.143-151
    • /
    • 2004
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studios published to date demonstrate that reporter gene imaging technologies will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • 제26권6호
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Terahertz (THz) imaging technology for therapeutic and diagnostic applications of cancer incorporating with radiopharmaceutical fields

  • Min, Sun-Hong;Cho, Ilsung;Park, Chawon;Jung, Wongyun;Hwang, Won Taek;Kim, Minho;Lee, Kyo Chul;Lee, Yong Jin;Lim, Sang Moo;Hong, Bong Hwan
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.120-128
    • /
    • 2019
  • Radiopharmaceuticals include therapeutic radiopharmaceuticals and diagnostic radiopharmaceuticals. Therapeutic radiopharmaceuticals are administered to the body and ingested at specific organs to detect radiation emitted from the site and to construct an image to diagnose the disease. Diagnostic radiopharmaceuticals are used to treat diseases by killing cells with radiation emitted from radiopharmaceuticals, such as cancer cells, vascular endothelial cells, arthritis, and Alzheimer's disease. The application possibilities of terahertz imaging technology for the combination of radiopharmaceuticals and molecular imaging medicine are discussed and experimental methods are presented. Terahertz imaging is expected to be a powerful technique because of the effective piercing feasibility, which enables to perform safe and high resolutive imaging. To investigate the response of cell to the terahertz wave, both the pulsed and CW THz wave systems are employed. THz imaging of a rat's paraffin-embedded epithelial cell with tumor is studied in advance.

Radio-Iodinated arbutin for tumor imaging

  • Huynh, Phuong Tu;Ha, Yeong Su;Lee, Woonghee;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.72-79
    • /
    • 2017
  • Arbutin is a hydroquinone derivative with a glucose moiety. As a tyrosinase inhibitor, it is widely used as a skin-whitening cosmetic agent for the treatment of cutaneous hyperpigmentary disorders, such as melasma and freckles. In the medical field, many studies have addressed the use of arbutin in various tumors, but the mechanism for tumor uptake of arbutin is still unclear. In this paper, we radiolabeled arbutin using radioiodine and studied its pharmacokinetics and tumor uptake via biodistribution experiments and single-photon emission computed tomography (SPECT) imaging. Radiolabeled $^{131}I-arbutin$ was stable for up to 24 h in PBS and serum. Biodistribution studies and SPECT imaging indicated high uptake of the compound in the bladder and kidneys shortly after injection. Twenty-four hours post-injection, significant deiodination was observed. Apart from high thyroid uptake, selective tumor uptake was clearly observed. The tumor-to-muscle and tumor-to-blood ratios were 26 and 9, respectively.

Direct radio-iodination of folic acid for targeting folate receptor-positive tumors

  • Huynh, Phuong Tu;Lee, Woonghee;Ha, Yeong Su;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제4권1호
    • /
    • pp.3-10
    • /
    • 2018
  • The folate receptor (FR) is a promising cell membrane-associated target for nuclear imaging of various cancers (via imaging $FR-{\alpha}$) and potentially also inflammatory diseases (via imaging $FR-{\beta}$), through the use of folic acid-based radioconjugates. However, there have been several drawbacks of previously reported radioconjugates, such as a short half-life of the radiolabel ($^{68}Ga\;t_{1/2}$ 68 min), a complex and time-consuming multistep radiosynthesis, and a high renal uptake of radiolabeled folate derivatives. The goal of this study was to develop an imaging probe by directly labeling folate with radioactive iodine without using an extra prosthetic group. The radiolabeling of folate was optimized using various labeling conditions and the labeled tracers were isolated by high-performance liquid chromatography. The in vitro stability of labeled folate was checked in phosphate-buffered saline and serum. The tumor-targeting efficacy of the probe was also evaluated by biodistribution studies using a murine 4T1 tumor model.

Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging

  • Wu, Szu-Hsien (Sam);Lee, Ji-Hyun;Koo, Bon-Kyoung
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.104-112
    • /
    • 2019
  • Tracking the fate of individual cells and their progeny through lineage tracing has been widely used to investigate various biological processes including embryonic development, homeostatic tissue turnover, and stem cell function in regeneration and disease. Conventional lineage tracing involves the marking of cells either with dyes or nucleoside analogues or genetic marking with fluorescent and/or colorimetric protein reporters. Both are imaging-based approaches that have played a crucial role in the field of developmental biology as well as adult stem cell biology. However, imaging-based lineage tracing approaches are limited by their scalability and the lack of molecular information underlying fate transitions. Recently, computational biology approaches have been combined with diverse tracing methods to overcome these limitations and so provide high-order scalability and a wealth of molecular information. In this review, we will introduce such novel computational methods, starting from single-cell RNA sequencing-based lineage analysis to DNA barcoding or genetic scar analysis. These novel approaches are complementary to conventional imaging-based approaches and enable us to study the lineage relationships of numerous cell types during vertebrate, and in particular human, development and disease.

Molecular imaging of atherosclerosis using reporter gene system

  • Yoo, Ran Ji;Lee, Kyochul;Kang, Joo Hyun;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제4권1호
    • /
    • pp.26-31
    • /
    • 2018
  • Macrophages play a key role in atherosclerotic plaque formation, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. Therefore, we aimed to identify atherosclerosis on noninvasive in vivo imaging using reporter gene system. This study demonstrated that recruitment of macrophages could be detected in atherosclerotic plaques of Apolipoprotein E knockout (ApoE-/-) mice with a sodium iodide symporter (NIS) gene imaging system using $^{99m}Tc-SPECT$. This novel approach to tracking macrophages to atherosclerotic plaques in vivo could have applications in studies of arteriosclerotic vascular disease.

방사선 내부흡수선량의 의학적 적용 (Medical Application of Radiation Internal Dosimetry)

  • 김경민;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.164-171
    • /
    • 2008
  • Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.