Browse > Article
http://dx.doi.org/10.22643/JRMP.2018.4.1.26

Molecular imaging of atherosclerosis using reporter gene system  

Yoo, Ran Ji (Department of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences)
Lee, Kyochul (Department of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences)
Kang, Joo Hyun (Department of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences)
Lee, Yong Jin (Department of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.4, no.1, 2018 , pp. 26-31 More about this Journal
Abstract
Macrophages play a key role in atherosclerotic plaque formation, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. Therefore, we aimed to identify atherosclerosis on noninvasive in vivo imaging using reporter gene system. This study demonstrated that recruitment of macrophages could be detected in atherosclerotic plaques of Apolipoprotein E knockout (ApoE-/-) mice with a sodium iodide symporter (NIS) gene imaging system using $^{99m}Tc-SPECT$. This novel approach to tracking macrophages to atherosclerotic plaques in vivo could have applications in studies of arteriosclerotic vascular disease.
Keywords
Atherosclerosis; Click chemistry; Macrophage; Reporter gene; SPECT imaging; PET imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grundy SM. Atherosclerosis imaging and the future of lipid management. Circulation 2004;110: 3509–3511.   DOI
2 Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol. 2005;46:1225–1228.   DOI
3 Milonas C, Jernberg T, Lindbäck J, Agewall S, Wallentin L, Stenestrand U. Effect of angiotensinconverting enzyme inhibition on one-year mortality and frequency of repeat acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 2010;105:1229–1234.   DOI
4 Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HWM, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M. Myocardial infarction accelerates atherosclerosis. Nature 2012;487:325–329.   DOI
5 Libby P, DiCarli M, Weissleder R. The vascular biology of atherosclerosis and imaging targets. J Nucl Med 2010;51:33S–37S.   DOI
6 Van der Wal AC, Becker AE, Van der Loos CM, Tigges AJ, Das PK. Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a concept. Coron Artery Dis1994;5:463–469.
7 Weber M, Bhatt DL, Brennan DM, Hankey GJ, Steinhubl SR, Johnston SC, Montalescot G, Mak K-H, Fox KAA,Easton DJ, Topol EJ, Hamm CW. High-sensitivity C-reactive protein and clopidogrel treatment in patients at high risk of cardiovascular events: a substudy from the CHARISMA trial. Heart 2011;97:626–631.   DOI
8 Moghadasian MH. Experimental atherosclerosis: A historical overview. Life Sci. 2002;70:855–865.   DOI
9 Whitman SC. A practical approach to using mice in atherosclerosis research. Clin Biochem Rev 2004;25:81–93.
10 Li X, Liu Y, Zhang H, Ren L, Li Q, Li N. Animal models for the atherosclerosis research: a review. Protein Cell. 2011;2:189–201.   DOI
11 Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008;117:379–387.   DOI
12 Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW. (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 2014;25:231–239.   DOI
13 Foss CA, Bedja D, Mease RC, Wang H, Kass DA, Chatterjee S, Pomper MG. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA. Biochem Biophys Res Commun 2015;461:70–75.   DOI
14 Larmann J, Frenzel T, Schmitz M, Hahnenkamp A, Demmer P, Immenschuh S, Tietge UJF, Bremer C, Theilmeier G. In vivo fluorescence-mediated tomography imaging demonstrates atorvastatinmediated reduction of lesion macrophages in ApoE-/-mice. Anesthesiology 2013;119:129–141.   DOI
15 Kang JH, Chung J-K, Lee YJ, Shin JH, Jeong JM, Lee DS, Lee MC. Establishment of a human hepatocellular carcinoma cell line highly expressing sodium iodide symporter for radionuclide gene therapy. J Nucl Med 2004;45:1571–1576.
16 Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458–460.   DOI
17 Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, Jhiang SM. Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 1996;226:339–345.   DOI
18 Spitzweg C, Morris JC. Approaches to gene therapy with sodium/iodide symporter. Exp Clin Endocrinol Diabetes. 2001;109:56–59.   DOI
19 Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 1999;26:481–490.   DOI
20 Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Kubler W, Debus J, Eisenhut M. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001;42:317–325.
21 Shu CJ, Guo S, Kim YJ, Shelly SM, Nijagal A, Ray P, Gambhir SS, Radu CG, Witte ON. Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci 2005;102:17412–17417.   DOI
22 Yoo RJ, Kim MH, Woo SK, Kim K Il, Lee TS, Choi YK, Kang JH, Lim SM, Lee YJ. Monitoring of macrophage accumulation in statin-treated atherosclerotic mouse model using sodium iodide symporter imaging system. Nucl Med Biol 2017;48:45–51.   DOI