• Title/Summary/Keyword: molecular beacon

Search Result 10, Processing Time 0.025 seconds

Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+ Human Lung Adenocarcinoma-initiating A549 Cells

  • Yao, Quan;Sun, Jian-Guo;Ma, Hu;Zhang, An-Mei;Lin, Sheng;Zhu, Cong-Hui;Zhang, Tao;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2014
  • Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR-155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

A Linear Beacon System Featuring an Internal Deoxyguanine Quencher Allows Highly Selective Detection of Single Base Mismatches

  • Lee, Young-Ae;Hwang, Gil-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2011-2014
    • /
    • 2010
  • The fluorescence intensity of a single-stranded oligonucleotide containing a fluorene-labeled deoxyuridine $(U^{Fl})$ unit increases by only 1.5-fold upon formation of its perfectly matched duplex. To increase the fluorescence signal during hybridization, we positioned a quencher strand containing a deoxyguanine (dG) nucleobase, functioning as an internal quencher, opposite to the $U^{Fl}$ unit to reduce the intrinsic fluorescence upon hybridization with a probe. From an investigation of the optimal length of the quencher strand and the effect of the neighboring base sequence, we found that a short strand (five-nucleotide) containing all natural nucleotides and dG as an internal quencher was effective at reducing the intrinsic fluorescence of a linear beacon; it also exhibited high total discrimination factors for the formation of perfectly matched and single base-mismatched duplexes. Such assays that function based on clear changes in fluorescence in response to single-base nucleotide mutations would be useful tools for accelerating diagnoses related to various diseases.

Early Diagnostic Method of Avian Influenza Virus Subtype Using Ultra Real-Time PCR (Ultra Real-Time PCR을 활용한 Avian Influenza Virus Subtype의 조기진단법)

  • Kim, Sang-Tae;Kim, Young-Kyoon;Kim, Jang-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • This ultra real-time PCR (UPCR) based diagnosis system for avian influenza A virus (AIV) subtype was designed. The target primer in this study was derived from H5N1 subtype-specific 133 bp partial gene of hemagglutinin (HA), and was synthesized by using PCR-based gene synthesis on the ground of safety. UPCR was operated by Mini-Opticon Q-PCR Quantitative Thermal Cycler using aptamer-based molecular beacon, total 10 ${\mu}l$ of reaction mixture with extraordinarily short time in each steps in PCR. The detection including UPCR and analysis of melting temperature was totally operated within 15 min. The AIV-specific 133 bp PCR product was correctly amplified until 5 molecules of HA gene as minimum of templates. This kind of PCR was drafted as UPCR in this study and it could be used to detect not only AIV subtype, but also other pathogens using UPCR-based diagnosis.

Development of a Quantitative Real-time Nucleic Acid Sequence based Amplification (NASBA) Assay for Early Detection of Apple scar skin viroid

  • Heo, Seong;Kim, Hyun Ran;Lee, Hee Jae
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • An assay for detecting Apple scar skin viroid (ASSVd) was developed based on nucleic acid sequence based amplification (NASBA) in combination with realtime detection during the amplification process using molecular beacon. The ASSVd specific primers for amplification of the viroid RNA and molecular beacon for detecting the viroid were designed based on highly conserved regions of several ASSVd sequences including Korean isolate. The assay had a detection range of $1{\times}10^4$ to $1{\times}10^{12}$ ASSVd RNA $copies/{\mu}l$ with reproducibility and precision. Following the construction of standard curves based on time to positive (TTP) value for the serial dilutions ranging from $1{\times}10^7$ to $1{\times}10^{12}$ copies of the recombinant plasmid, a standard regression line was constructed by plotting the TTP values versus the logarithm of the starting ASSVd RNA copy number of 10-fold dilutions each. Compared to the established RT-PCR methods, our method was more sensitive for detecting ASSVd. The real-time quantitative NASBA method will be fast, sensitive, and reliable for routine diagnosis and selection of viroid-free stock materials. Furthermore, real-time quantitative NASBA may be especially useful for detecting low levels in apple trees with early viroid-infection stage and for monitoring the influence on tree growth.

Multiplex Real-time PCR for RRM1, XRCC1, TUBB3 and TS mRNA for Prediction of Response of Non-small Cell Lung Cancer to Chemoradiotherapy

  • Wu, Guo-Qiu;Liu, Nan-Nan;Xue, Xiu-Lei;Cai, Li-Ting;Zhang, Chen;Qu, Qing-Rong;Yan, Xue-Jiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4153-4158
    • /
    • 2014
  • Background: This study was aimed to establish a novel method to simultaneously detect expression of four genes, ribonucleotide reductase subunit M1(RRM1), X-ray repair cross-complementing gene 1 (XRCC1), thymidylate synthase (TS) and class III ${\beta}$-tubulin (TUBB3), and to assess their application in the clinic for prediction of response of non-small cell lung cancer (NSCLC) to chemoradiotherapy. Materials and Methods: We have designed four gene molecular beacon (MB) probes for multiplex quantitative real-time polymerase chain reactions to examine RRM1, XRCC1, TUBB3 and TS mRNA expression in paraffin-embedded specimens from 50 patients with advanced or metastatic carcinomas. Twenty one NSCLC patients receiving cisplatin-based first-line treatment were analyzed. Results: These molecular beacon probes could specially bind to their target genes in homogeneous solutions. Patients with low RRM1 and XRCC1 mRNA levels were found to have apparently higher response rates to chemoradiotherapy compared with those with high levels of RRM1 and XRCC1 expression (p<0.05). The TS gene expression level was not significantly associated with chemotherapy response (p>0.05). Conclusions: A method of simultaneously detecting four molecular markers was successfully established and applied for evaluation of chemoradiotherapy response. It may be a useful tool in personalized cancer therapy.

Live Cell Detection of Monoclonal Antibody Light and Heavy Chain mRNAs using Molecular Beacons (분자 비컨을 이용한 살아 있는 세포에서 단일클론항체 경쇄와 중쇄 mRNA 검출에 의한 세포주 선별방법)

  • Jeong, Seunga;Rhee, Won Jong
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Developing the method for the selection of animal cell line producing therapeutic monoclonal antibody (mAb) is invaluable as its market is rapidly growing. Although the quality of produced mAb is as important as quantity, however there is no method developed for the selective screening of cell lines on the basis of both quantity and quality. From recent reports, the ratio of light and heavy chain mRNAs of mAb in the cell is a key parameter for the indication of product quality. Therefore, it is obvious that developing the novel method that can detect both light and heavy chain mRNAs in single live cell will provide unprecedented opportunities in bio-industry. Here, we have constructed oligonucleotide probes, molecular beacons for the detection of light or heavy chain mRNAs, respectively, in the live cells producing mAbs. Both beacons showed increased fluorescent intensity after transient transfection of plasmid expressing mAbs analyzed by fluorometer. Flow cytometric analysis clearly demonstrated that both molecular beacons can simultaneously detect the expression of light and heavy chain mRNAs of mAb in the same cell. The technique described in the thesis provides the new direction and concept for developing the method for the smart selection of cell lines producing recombinant proteins including therapeutic mAbs.

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

Real-time Nucleic Acid Sequence Based Amplification (Real-time NASBA) for Detection of Norovirus

  • Lee, In-Soo;Choi, Dong-Hyuk;Lim, Jae-Won;Cho, Yoon-Jung;Jeong, Hye-Sook;Cheon, Doo-Sung;Bang, Hye-Eun;Jin, Hyun-Woo;Choi, Yeon-Im;Park, Sang-Jung;Kim, Sung-hyun;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 2011
  • Noroviruses (noroV) are the major cause of nonbacterial gastroenteritis in humans worldwide. Since noroV cannot yet be cultured in vitro and their diagnosis by electron microscopy requires at least $10^6$ viral particles/g of stool a variety of molecular detection techniques represent an important step towards the detection of noroV. In the present study, we have applied real-time nucleic acid sequence-based amplification (real-time NASBA) for simultaneous detection of NoroV genogroup I (GI) and genogroup II (GII) using standard viral RNA. For real-time NASBA assay which can detected noroV GI and GII, a selective region of the genes encoding the capsid protein was used to design primers and genotype-specific molecular beacon probes. The specificity of the real-time NASBA using newly designed primers and probes were confirmed using standard viral RNA of noroV GI and GII. To determine the sensitivity of this assay, serial 10-fold dilutions of standard viral RNA of noroV GI and GII were used for reverse transcription polymerase chain reaction (RT-PCR) and real-time NASBA. The results showed that while agarose gel electrophoresis could detect RT-PCR products with 10 pg of standard viral RNA, the real-time NASBA assay could detect 100 fg of standard viral RNA. These results suggested that the real-time NASBA assay has much higher sensitivity than conventional RT-PCR assay. This assay was expected that might detect the viral RNA in the specimens which could have been false negative by RT-PCR. There were needed to perform real-time NASBA with clinical specimens for evaluating accurate sensitivity and specificity of this assay.