Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.7.2011

A Linear Beacon System Featuring an Internal Deoxyguanine Quencher Allows Highly Selective Detection of Single Base Mismatches  

Lee, Young-Ae (Department of Chemistry, Kyungpook National University)
Hwang, Gil-Tae (Department of Chemistry, Kyungpook National University)
Publication Information
Abstract
The fluorescence intensity of a single-stranded oligonucleotide containing a fluorene-labeled deoxyuridine $(U^{Fl})$ unit increases by only 1.5-fold upon formation of its perfectly matched duplex. To increase the fluorescence signal during hybridization, we positioned a quencher strand containing a deoxyguanine (dG) nucleobase, functioning as an internal quencher, opposite to the $U^{Fl}$ unit to reduce the intrinsic fluorescence upon hybridization with a probe. From an investigation of the optimal length of the quencher strand and the effect of the neighboring base sequence, we found that a short strand (five-nucleotide) containing all natural nucleotides and dG as an internal quencher was effective at reducing the intrinsic fluorescence of a linear beacon; it also exhibited high total discrimination factors for the formation of perfectly matched and single base-mismatched duplexes. Such assays that function based on clear changes in fluorescence in response to single-base nucleotide mutations would be useful tools for accelerating diagnoses related to various diseases.
Keywords
DNA; Fluorene; SNP; Molecular beacon; Deoxyguanine;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Pirrung, M. C. Angew. Chem., Int. Ed. 2002, 41, 1276.   DOI
2 Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757   DOI
3 Liu, G.; Lee, T. M. H.; Wang, J. J. Am. Chem. Soc. 2005, 127, 38.   DOI
4 Hwang, G. T.; Seo, Y. J.; Kim, B. H. J. Am. Chem. Soc. 2004, 126, 6528.   DOI
5 Luo, G.; Zheng, L.; Zhang, X.; Zhang, J.; Nilsson-Ehle, P.; Xu, N. Anal. Biochem. 2009, 386, 161.   DOI
6 Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.   DOI
7 Cooper, J. P.; Hagerman, P. J. Biochemistry 1990, 29, 9261.   DOI
8 Gait, M. J. Oligonucleotide Synthesis: A Practical Approach; IRL Press: Washington, DC, 1984.
9 Ryu, J. H.; Seo, Y. J.; Hwang, G. T.; Lee, J. Y.; Kim, B. H. Tetrahedron 2007, 63, 3538.   DOI
10 Wagenknecht, H.-A. Angew. Chem., Int. Ed. 2003, 42, 2454.   DOI
11 Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303.   DOI
12 Tyagi, S.; Bratu, D.; Kramer, F. R. Nat. Biotechnol. 1998, 16, 49.   DOI
13 Ho, H. A.; Boissinot, M.; Bergeron, M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.   DOI
14 Yamane, A. Nucleic Acids Res. 2002, 30, e97.   DOI
15 Kumar, T. S.; Wengel, J.; Hrdlicka, P. J. ChemBioChem 2007, 8, 1122.   DOI
16 Thurley, S.; Roglin, L.; Seitz, O. J. Am. Chem. Soc. 2007, 129, 12693.   DOI
17 Lyamichev, V.; Mast, A. L.; Hall, J. G.; Prudent, J. R.; Kaiser, M. W.; Takova, T.; Kwiatkowski, R. W.; Sander, T. J.; de Arruda, M.; Arco, D. A.; Neri, B. P.; Brow, M. A. D. Nat. Biotechnol. 1999, 17, 292.   DOI
18 Komiyama, M.; Ye, S.; Liang, X. G.; Yamamoto, Y.; Tomita, T.; Zhou, J. M.; Aburatani, H. J. Am. Chem. Soc. 2003, 125, 3758.   DOI
19 Schena, M.; Heller, R. A.; Theriault, T. P.; Konrad, K.; Lachenmeier, E.; Davis, R. W. Trends Biotechnol. 1998, 16, 301.   DOI