• Title/Summary/Keyword: molding stability

Search Result 118, Processing Time 0.021 seconds

Improvement of Fatigue Life and Vibrational Characteristics of Composite Material Propeller Shaft of Vehicle (수송기계용 복합재료 추진축의 피로수명 및 진동특성 향상에 관한 연구)

  • 공창덕;정진호;정종철;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.104-117
    • /
    • 1999
  • The Composite materials has been used in the field of high technology industry because of high specific stiffness and high specific strength. Specially, the composite materials has been widely applied to the field of the aircraft and the transportation by the effectiveness of light weight due to low specific weight and reduction of the parts due to bonding, molding and so on. These advantages about the composite have led to study and apply in the transmission shaft for the aircraft and the drive shaft for the automobile. The composite material propeller shaft with the high vibrational stability was designed and analyzed. In order to verify the analysis, two types of experimental test which are the FFT analyzer with impact hammer and the rotational equipment were applied.

  • PDF

The Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지중 전력설비 되메움재로의 활용성 평가)

  • 이대수;홍성연;김경열;상현규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.201-207
    • /
    • 2003
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated far mechanical stability, environmental hazard and power transmission capacity Also its properties are compared with those of the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

A Study on the Design of High-Voltage Connector for Green Car using FEM (유한요소법을 이용한 친환경 자동차용 고전압 커넥터 설계에 관한 연구)

  • Kim, Sung-Woong;Choi, Jung-Wook;Kim, Hyeung-Rak;Kwon, Young-Seok;Kang, Nam-Jin;Choi, Kyung-Seok;Park, Hyung-Pil;Cha, Baeg-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.716-723
    • /
    • 2011
  • The battery capacity of electric/hybrid vehicle is much larger than present automobile. For that reason, the connector of Green Car should be designed to transmit the high-electric voltage. In addition, the electromagnetic wave should be shielded to protect communication and signal circuits. In this study, shielding performance of the connector was analyzed through electromagnetic shield analysis, and a connector of Green Car was designed using thermoelectrical analysis, which is capable of transmitting the high-electric power. In the design of connector structure, the improved stability and workability was considered.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Mohan, D. Jagan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.416-426
    • /
    • 2007
  • Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

Design and fabrication of molds moved wall thickness for biochip considering molding stability (성형안정성을 고려한 바이오칩용 측벽 이동형 금형설계 및 제작)

  • Go, Young-Bae;Kim, Jong-Sun;Min, In-Gi;Yu, Jae-Won;Kim, Jong-Duck;Yoon, Kyung-Hwan;Lee, Sung-Ho;Kim, Kyung-Min;Kim, Byung-Il;Hwang, Chul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.25-28
    • /
    • 2008
  • Micro fabrication of biochip such like lab-on-a-chip becomes increasingly important. In this study, we designed and manufactured of new molds which were main factors for forming process in order to mass produce of biochip using forming process. Forming analysis of biochip was performed by Moldflow software. Results of this study are able to design and manufacture the mold which can be easy to eject the workpiece by using the slide mechanism for biochip.

  • PDF

3D porous ceramic scaffolds prepared by the combination of bone cement reaction and rapid prototyping system

  • Yun, Hui-Suk;Park, Ui-Gyun;Im, Ji-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • Clinically-favored materials for bone regeneration are mainly based on bioceramics due to their chemical similarity to the mineral phase of bone. A successful scaffold in bone regeneration should have a 3D interconnected pore structure with the proper biodegradability, biocompatibility, bioactivity, and mechanical property. The pore architecture and mechanical properties mainly dependent on the fabrication process. Bioceramics scaffolds are fabricated by polymer sponge method, freeze drying, and melt molding process in general. However, these typical processes have some shortcomings in both the structure and interconnectivity of pores and in controlling the mechanical stability. To overcome this limitation, the rapid prototyping (RP) technique have newly proposed. Researchers have suggested RP system in fabricating bioceramics scaffolds for bone tissue regeneration using selective laser sintering, powder printing with an organic binder to form green bodies prior to sintering. Meanwhile, sintering process in high temperature leads to bad cost performance, unexpected crystallization, unstable mechanical property, and low bio-functional performance. The development of RP process without high thermal treatment is especially important to enhance biofunctional performance of scaffold. The purpose of this study is development of new process to fabricate ceramic scaffold at room temperature. The structural properties of the scaffolds were analyzed by XRD, FE-SEM and TEM studies. The biological performance of the scaffolds was also evaluated by monitoring the cellular activity.

  • PDF

Design and fabrication of wafer scale microlens array for image sensor using UV-imprinting (UV 임프린팅을 이용한 이미지 센서용 웨이퍼 스케일 마이크로렌즈 어레이 설계 및 제작)

  • Kim, Ho-Kwan;Kim, Seok-Min;Lim, Ji-Seok;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.100-103
    • /
    • 2007
  • A microlens array has been required to improve light conversion efficiency in image sensors. A microlens array can be usually fabricated by photoresist reflow, hot-embossing, micro injection molding, and UV-imprinting. Among these processes, a UV-imprinting, which is operated at room temperature with relatively low applied pressure, can be a desirable process to integrate microlens array on image sensors, because this process provides the components with low thermal expansion, enhanced stability, and low birefringence, furthermore, it is more suitable for mass production of high quality microlens array. In this study, to analyze the optical properties of the wafer scale microlens array integrated image sensor, another wafer scale simulated image sensor chip array was designed and fabricated. An aspherical square microlens was designed and integrated on a simulated image sensor chip array using a UV-imprinting process. Finally, the optical performances were measured and analyzed.

  • PDF

Effect of Electron Beam Irradiation on the Interfacial and Thermal Properties of Henequen/Phenolic Biocomposites

  • Pang, Yansong;Yoon, Sung Bong;Seo, Jeong Min;Han, Seong Ok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2005
  • Natural fiber/phenolic biocomposites with chopped henequen fibers treated at various levels of electron beam irradiation (EBI) were made by means of a matched-die compression molding method. The interfacial property was explored in terms of interfacial shear strength measured by a single fiber microbonding test. The thermal properties were studied in terms of storage modulus, tan ${\delta}$, thermal expansion and thermal stability measured by dynamic mechanical analysis, thermomechanical analysis and thermogravimetric analysis, respectively. The result showed that the interfacial and thermal properties depend on the treatment level of EBI done to the henequen fiber surfaces. The present result also demonstrates that 10 kGy EBI is most preferable to physically modify the henequen fiber surfaces and then to improve the interfacial property of the biocomposite, supporting earlier results studied with henequen/poly (butylene succinate) and henequen/unsaturated polyester biocomposites.

  • PDF

A Study on Stability of Ag sheathed Bi-2229 tape and Cylindrical Stacking Conductor for HTS Cable (고온초전도 케이블용 은시스 Bi-2223 테이프 및 적층 도체의 안정성연구)

  • Lee, B.S.;Kim, Y.S.;Jang, H.M.;Back, S.M.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1554-1556
    • /
    • 2000
  • Normal zone propagation(NZP) characteristics were investigated on Ag sheathed multi filamentary Bi-2223 tape and cylindrical stacking conductor. The critical current($I_c$) of Ag sheathed Bi-2223 tape and cylindrical stacking conductor were 12 A, 63 A at 77 K, 0 T. Normal zone propagation(NZP) experiments with tape were conducted with refrigerator in temperature from 45 K to 77 K, 0 T. Cylindrical stacking conductor was molding with epoxy and experiments were conducted with adiabatic condition in $LN_2$. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. Temperature ($T_1$) of tape with distance of 0.5 cm from heater was strongly climbed up to 95K and slowly decreased. NZP velocities of cylindrical stacking conductor were 1.9-2.4 cm/sec in $LN_2$.

  • PDF