• Title/Summary/Keyword: molding Method of Model

Search Result 104, Processing Time 0.022 seconds

Identification of Cross-WLF Viscosity Model Parameters Using Optimization Technique (최적화기법을 이용한 Cross-WLF점도 모델 계수 추정)

  • Kim, Sun-Yong;Park, Si-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.623-632
    • /
    • 2018
  • Predicting the behavior of rheological polymers is highly shear rate- and temperature-dependent. The Cross-WLF viscosity model has become a powerful solution that describes the shear rate- and temperature-dependent characteristics. To estimate the behavior of polymers in computational simulations, the coefficients of the Cross-WLF model should be well identified. An identification technique was proposed to determine the Cross-WLF viscosity model coefficient. The assumption is that the Cross-WLF viscosity model well describes the real characteristics of polymers when the calculated viscosity with the parameters is identical to the reference data. In this study, Auto-desk Moldflow data were used as a reference. The numerical examples showed that the proposed method accurately identifies the Cross-WLF viscosity model coefficients.

Optimization of Gate Location for Melt Flow Balancing in Injection Mold Cavity By Using Recursive Design Area Reduction Method (설계영역 반복축소법에 의한 사출금형의 수지 유동균형을 위한 게이트 위치 최적화)

  • Park, Jong-Cheon;Lee, Gyu-Seok;Choi, Seong-Il;Kang, Jin-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.114-122
    • /
    • 2013
  • This study introduces an optimization methodology for the determination of gate location that ensures the melt flow balance within a part cavity of injection mold. A new sequential direct-search scheme based on the recursive reduction of the designer-specified gate design area is developed, and it is integrated with a commercial flow simulation tool for optimization. To quantify the level of melt flow balance, we employ the maximum difference among the fill times for the melt fronts to reach the boundary elements of part cavity as objective function. The proposed methodology is successfully applied in the case study of melt flow balancing in molding of a bar code scanner model. The result shows that the melt flow balance at the optimized gate positions is significantly improved from that for the initial gate position.

Effect of High Filler Loading on the Reliability of Epoxy Holding Compound for Microelectronic Packaging (반도체 패키지 봉지재용 에폭시 수지 조성물의 신뢰특성에 미치는 실리카 고충전 영향)

  • 정호용;문경식;최경세
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.51-63
    • /
    • 1999
  • The effects of high filler loading technique on the reliability of epoxy molding compound (EMC) as a microelectronic encapsulant was investigated. The method of high filler loading was established by the improvement of maximum packing fraction using the simplified packing model proposed by Ouchiyama, et al. With the maximum packing fraction of filler, the viscosity of EMC wart lowered and the flowability was improved. As the amount of filler in EMC increased, several properties such as internal stress and moisture absorption were improved. However, the adhesive strength with the alloy 42 leadframe decreased when the filler content was beyond the critical value. It was found that the appropriate content of filler was important to improve the reilability of EMC, and the optimum filler combination should be selected to obtain high reliable EMC filled with high volume fraction of filler.

  • PDF

Cure simulation in LED silicone lense using dynamic reaction kinetics method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화공정해석)

  • Song, Min-Jae;Hong, Seok-Kwan;Park, Jeong-Yeon;Lee, Jeong-Won;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2014
  • Silicone is recently used for LED chip lense due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for curing process during silicone molding. For analysis of curing process, a dynamic cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the slow cure reduced abrupt reaction heat and it was predicted decrease of the residual stress.

  • PDF

Magnetic Force-based Immunochip using Superparamagnetic Nanoparticles

  • Park, Je-Kyun;Kim, Kyu-Sung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.19-19
    • /
    • 2005
  • This paper reports a novel magnetic force-based microfluidic immunoassay using microbeads and magnetic nanoparticles. The magnetic force-based immunoassay was devised first and successfully applied to detect the rabbit IgG as the model analyte of microfluidic sandwich immunoassay. The microchannels were fabricated by poly(dimethysiloxane) (PDMS) molding processes and bonded on a slide glass by plasma treatment. At the part of the inlet, sample solution was hydrodynamically focused. The focused microbeads of sample solution were flowed through the 150 ${\mu}m$ width channel of outlet. However, when the microbeads are conjugated with the superparamagnetic nanoparticles under the applied magnetic fields, they will switch their flow path and flow through the 95 ${\mu}m$ width channel of outlet. The movements of microbeads conjugated with magnetic nanoparticles were demonstrated by magnetic field $gradients.^{1)}$ High magnetic field gradients using micro electromagnets could be applied to this detection method for high sensitivity and lower detection limit. In addition, the multiplexed $immunoassay^{2)}$ using an encoded microbead which is immobilized with a certain antibody could be possible using this detection principle.

  • PDF

Performance Evaluation of C/SiC Composites (C/SiC 복합재료의 내열성능 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.185-188
    • /
    • 2007
  • The main objective of this research effort was to develope the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The various carbon preform were manufactured by filament winding, tape rolling, involute layup and stack molding process. For the best performance of thermal and mechanical properties, many process conditions were tested and selected by varying preform, the content of SiC, temperature, impregnation resin and chemical vapour reaction. In conclusion, the high performance and reliability of C/SiC composite were proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model was originated.

  • PDF

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.

Flow Analysis and Process Conditions Optimization in a Cavity during Semiconductor Chip Encapsulation (반도체 칩 캡슐화성형 유동해석 및 성형조건 최적화에 관한 연구)

  • 허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.67-72
    • /
    • 2001
  • An Effort has been made to more accurately analyze the flow in the chip cavity, particularly to model the flow through the openings in the leadframe and correctly treat the thermal boundary condition at the leadframe. The theoretical analysis of the flow has been done by using the Hele-Shaw approximation in each cavity separated by a leadframe. The cross-flow through the openings in the leadframe has been incorporated into the Hele-Shaw formulation as a mass source term. The optimization program based on the complex method integrated with flow analysis program has been successfully used to obtain the optimal filling conditions to avoid short shot.

  • PDF

Analysis of the Influence of Electrical Discharge Machining Parameters on Surface Roughness of CK45

  • Abedi, Esmail;Daneshmand, Saeed;Karimi, Iman;Neyestanak, A. A. Lotfi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.131-138
    • /
    • 2015
  • Electrical discharge machining is an unconventional machining process in which successive sparks applied to machine the electrically conductive materials. Any changes in electrical discharge machining parameters lead to the pieces with distinct surface roughness. The electrical discharge machining process is well applied for high hardness materials or when it is difficult to use traditional techniques to do material removing. Furthermore, this method is widely applied in industries such as aerospace, automobile, molding, and tool making. CK45 is one of the important steels in industrial and electrical discharge machining can be considered as a proper way for its machining because of high hardness of CK45 after thermal operation of the electrical discharge machining process. Optimization of surface roughness as an output parameters as well as electrical discharge machining parameters including current, voltage and frequency for electrical discharge machining of CK45 has been studied using copper tools and kerosene as the dielectric. For such a purpose and to achieve the precise statistical analysis of the experiment results design of experiment was applied while non linear regression method was chosen to assess the response of surface roughness. Then, the results were analyzed by means of ANOVA method and machining parameters with more effects on the desired outputs were determined. Finally, mathematical model obtained for surface roughness.

Low-Cost Small Satellite Research and Development as an Education Tool (교육용 도구로서의 저가 소형위성 연구 및 개발)

  • 문병영;장영근;이병훈
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.80-91
    • /
    • 2006
  • A method of multidisciplinary education has been implemented for satellite design, based on HAUSAT-1 and 2 ultra-small satellite development projects, in order to provide practical knowledge and experience to students studying satellite engineering. HAUSAT-1 was the nation's first 1kg-class ultra-small satellite. HAUSAT-2 nano-satellite is currently under a Proto-Flight Model development. These design projects make it possible to achieve the goal of science and technical research, which is representative of a university function, and the goal of molding professionals through providing an integrated function of system design education. An integrated system design, like satellite system, provides all participating students with an opportunity to directly/indirectly experience the entire system development process and encourage growth of multidisciplinary system education that has lately become an important issue.