• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.025 seconds

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

Three-Dimensional Finite Element Analysis of compression Molding of Sheet Molding Compound (SMS 압축성형공정의 3차원 유한요소해석)

  • 김수영;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1995
  • The compression molding of SMC (sheet molding compund) at room temperature was analyzed based on rigid-viscoplastic approach by three dimensional finite element program. The developed program was tested by solving the three dimensional compression of wedge type specimens of aluminum alloys at various processing conditions. The simulation results were compared well to the experimental results available in the literature. based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC, which is a thermosetting material reinforced with chopped fiber glass. To investigate the effects of friction conditions and mold closing speeds for compression molding of SMC charge at room temperature, compressions of the cylindrical and rectangular shaped SMC were analyzed for various friction conditions and mold closing speeds. The calculated load values were compared to the experimental results for the compression molding of cylindrical specimen.

  • PDF

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.

Numerical Study on Preform Injection Molding for the PET Bottles Manufacturing (PET 용기 제작을 위한 프리폼 사출 성형에 대한 수치적 연구)

  • Kwon, Chang-Oh;Kim, Jong-Deok;Kim, Jeong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.285-289
    • /
    • 2007
  • This study presents the preform injection molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding of a preform is considered in this paper using CAE with a view to minimize the warpage. In order to determine the design parameters and processing conditions in injection molding, it is very important to establish the numerical model with physical phenomenon. In this study, a three dimensional model has been introduced for the purpose and flow simulations of filling, post-filling and cooling process are carried out. The simulations resulted in the warpage in good agreement with the measurements. Also, from the result of numerical analysis, we appropriate -ly predicted the warpage, deformation and thickness distribution along the preform wall.

  • PDF

A Study on Molding Process Fiber Reinforced Plastic Composites (Flow analysis Measurement of viscosity of Unidirectional Fiber Reinforced Plastic Composites) (섬유강화 플라스틱 복합재의 성형공정에 관한 연구(일방향 섬유강화 복합재의 점도측정 및 유동해석))

  • 조선형;안종윤;이국웅;윤성운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • During a compression molding process of Unidirectional Fiber Reinforced Plastic Composites, control of filling patterns in mold and distribution of fiber is needed to predict the effects of molding parameters on the flow characteristics. To obtain an excellent product and decide optimum molding conditions, it is important to know the relationship between molding conditions and viscosity. In this study, the anisotropic viscosity of the Unidirectional Fiber Reinforced Plastic Composites is measured by using the parallel plastometer. The model for flow state has been simulated by using the viscosity. The composites is treated as an incompressible New-tonian fluid. The effects of longitudinal/transverse viscosity ration A and slip parameter $\alpha$ on buldging phenomenon and mold filling patterns, are also discussed.

  • PDF

Flow Analysis to Determine Runner Balance in Family Injection Molding (훼밀리 몰드 성형에서 러너밸런스 결정을 위한 유동해석)

  • 김용조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.64-70
    • /
    • 1999
  • Family injection molding of plastic is widely used to enhance productivity. Runners for molded products in fami-ly injection molding have to be balanced so that each of the producs is filled completely at the same time,. In this study computer simulations were performed to determine balanced circular section runners in family injection molding with two cavities where each of he cavity shapes is like a case. It was found from the computer simula-tions that runner balance could be fulfilled only by modifying runner diameters. But in order to get more quality molded products other process factors such as flow length flow resistance shapes of products and etc, should be taken in to consideration for the design of a family injection molding process.

  • PDF

A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens (Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구)

  • Lee, Seung-Joon;Hyun, Dong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.

Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis (Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

Measurement of Viscosity and Numerical Analysis of High Speed Injection Molding for Thin-Walled LGP (박형 도광판의 고속사출성형을 위한 수지 점도 측정 및 수치해석)

  • Jung, T.S.;Kim, J.S.;Ha, S.J.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • The light guide plate has become the major component for the backlight module in general information technology products (e.g. mobile phones, monitors, etc.). High speed injection molding has been adopted for thin walled LGP giving advantages such as weight, shape, size, and reduction in production costs. In the current study, the rheological characteristics of high liquidity plastic resin PC(HL8000) were measured using a capillary rheometer to improve the reliability of the numerical analysis for high speed injection molding. With the measured viscosity and PVT of PC(HL8000), numerical analysis of injection molding was conducted using the simulation software(Moldflow). Filling time and deflection were predicted and compared with those of traditional PC resins(H3000, H4000). The results show that PC(HL8000) has significantly different rheological characteristics during high speed injection molding. Hence proper properties of the resin should be used to improve the accuracy of numerical predictions.

Injection molding analysis of smart phone camera VCM housing (스마트폰 카메라용 VCM housing 사출 성형 해석)

  • Yoon, Seon Jhin;Cho, Yong Moo
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • The injection molding analysis of VCM (Voice Coil Motor) housing for smart phone cameras were performed. We conducted the analysis in terms of injection molding pressure, the formation of weld lines, flow marks, and flow patterns. The goal of the analysis was targeted for the prediction of the optimal gate locations. Because the quality of VCM housing is strongly dependent on the precise control of the camera lens by its nature, we focused on the lens guiding lanes in the VCM housing. We first calculated the maximum injection molding pressure in terms of the filled volumes. The injection molding pressure were calculated within 146MPa at about 90% volume filled. We also investigated the possibility of the occurrence of design-related defects such flow marks, weld lines. Filling patterns regarding the design of the gate locations were delineated to find the weld lines. Throughout the simulations, the final deformations of the lens guiding lanes for the VCM housing were calculated. The deformations distribute ranging from $0.5{\mu}m$ to $2.50{\mu}m$, which were used to find the optimal design of the gates.