• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.024 seconds

Experimental and Computational Study on the Mold Shrinkage of PPS Resin in Injection Molded Specimen

  • Pak, Hyosang;Sim, Hyojin;Oh, Hyeon-Kyung;Lee, Guen-Ho;Kang, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • In this study, molding shrinkage of PPS resin was investigated. Two types of PPS resins with differing glass fiber and calcium carbonate content were used for this purpose. To observe mold shrinkage, molding conditions based on injection temperature, injection speed, and the position of the cushion were selected. Circular and rectangular specimens were used for the study model. Injection molding simulation was performed to predict the filling pattern and mold shrinkage, and the simulation results were compared with the experimental conclusions. It was observed that the mold shrinkage showed the highest shrinkage (distributed from 0.05% to 0.32%) dependence on the injection temperature, and the lowest shrinkage (distributed from 0.05% to 0.31%) dependence on the injection speed. The role of the position of the cushion in mold shrinkage was difficult to observe. The results of the simulation mostly agreed with the experimental results; however, for some molding conditions, the mold shrinkage in the simulation was overestimated as compared to that in the experiment.

Analysis for Filling Stage of Injection Molding Considering Compressibility and Phase Change (압축성과 상변화를 고려한 사출성형의 충전과정 해석)

  • Lee, Sang-Chan;Park, Chang-Eon;Yang, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.60-65
    • /
    • 2001
  • To simulate the real molding conditions, the effects of phase change and compressibility of the resin were considered in the present investigation. A modified Cross model with either an Arrhenius-type or WLF-type functional form was used for modeling viscosity of the resin. A double-domain Tait equation of state was employed to describe the compressibility of the resin during molding. The energy balance equation including latent-heat dissipation fur semi-crystalline materials was solved in order to predict the solidified layer and temperature profile. Injection molding experiments were carried out using polypropylene(PP) in the present study. Based on the comparison between experiments and simulations, it was found out the predicted pressure distributions and melt front propagations were accurate. Thus it was concluded that the program developed in this study was proved to be useful in simulations of injection molding process.

  • PDF

The Effect of Gas Pressure on the Stiffness of Products Manufactured with Gas-Assisted Injection (가스성형시 가스압력이 성형품의 강성에 미치는 영향)

  • Park, Gyun-Myeong;Park, Bong-Hyeon;Lee, Seong-Hui;Kim, Cheong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.102-109
    • /
    • 2000
  • In the present study, gas-assisted molding and structural vibration analysis of hollow long cylinder with the variation of gas injection pressure are performed. Though there are so many parameters such as delay time, injection pressure, and gas pressure on gas-assisted molding, the latter has the most dominant effect on this process. Therefore, the present paper deals with the effects of gas pressure on the dynamic stiffness of the model by means of vibration analysis and then suggests the fundamental materials which can be directly adapted to manufacturing lines.

  • PDF

A Study on the Injection Molding for the tight Guide Plate of a Small Sized LCD (1) : finite Element Analysis and Mold Design (소형 LCD 도광판의 사출성형에 관한 연구 (1) : 유한요소해석 및 금형설계)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.332-340
    • /
    • 2002
  • The light guide plate of the TFT-LCD reflects the light originated from the light source, and guides the light to the front side of LCD so that we can see images vividly. This paper is concerned with tile injection molding of the light guide plate for the reflective typed LCD related to IMT-2000. The finite element analysis has been carried out based on the pine stress theory to predict both the thermal stresses of the products in the post-filling stage and the in-plane deformation behavior of the products after ejection process. Based on the simulation results, the mold for the light guide plate of a 2inch sized LCD has been designed.

Minimization of Weld Lines in Two Shot Molded Parts with Microlenses (미소 렌즈가 내재화된 이중사출 성형제품의 웰드라인 최소화)

  • 신주경;민병권;김영주;강신일
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • A new design based on the appropriate geometry of molded part and type of runner system under the optimal processing conditions was proposed to minimize the micro weld lines on the sub deco surface molded by two shot molding. Theoretical and experimental studies were conducted to examine the cause of the weld lines during the overmolding process in two shot molding. Various dimensions and geometries of substrate$(1^{st}shot)$ and the wall thickness of overmold$(2^{nd}shot)$ have been proposed to avoid the weld lines which are the most inevitable appearance defects occurred on the sub deco. The each design proposal was analyzed by mold flow analysis after part modeling. The analysis results were compared with molded part from mass production tool. It could be seen that from the analysis that the proper geometry of plastic part and type of runner system considering pressure drop under the optimal processing conditions were the most influential factors to avoid weld lines occured on the sub deco.

Prediction of Core Shift using Injection Molding CAE program (사출성형 CAE 프로그램을 이용한 코어 휨의 예측)

  • Moon, Jeong-Yeon;Kwak, Min-Hyuk;Park, Tae-Won;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.7-11
    • /
    • 2014
  • The Core-Shift is often generated on injection mold which have thin and long core. And Core-Shift brings out problems for thickness variation and product ejecting process. In this study, analysis of Core-Shift was performed according to change of materials of core(steel P-20, Be-Cu) and various polymers(PP, PC) by using MoldFolw MPI 6.1 which is commercial injection molding analysis program. As the results of analysis, the magnitude of Core-Shift was increased as being use polymer had lower fluidity and lower rigidity core. In the future, we will study the relationship between amount of Core-Shift and ejecting force.

  • PDF

Development of Lightweight Molding CAE Data for Efficient Exchange (사출성형 해석 결과 데이터의 효율적 공유를 위한 경량데이터 개발)

  • Park, Ji-Hun;Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.344-350
    • /
    • 2011
  • In injection molding industries, CAE analyses are generally used to find out problems predicted during the process of manufacturing. The results of CAE analyses consist of much in formation such as meshes and stress, so that the size of data is pretty large. To reduce the size of the data and to make it easy to share, the CAE result to JT translator is proposed in this paper. The translator consists of three modules to translate CAE result to JT format; Extracting module gets ASCII data of product shape and the result values of CAE analysis. Sorting module and mapping module make an element data set and JT file with the data extracted from Extracting module respectively. To the JT files, engineers are able to append product properties and their comments, so that they can share the whole history of the analysis process. In addition, our case study shows that the size of JT format is reduced by almost 90% of its original data format.

The Improvement of Weldline and Flow mark Defection by using Injection Molding Analysis (사출성형 해석을 통한 Weldline 및 Flow mark 개선사례)

  • Lee, Yeong Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1295-1301
    • /
    • 2013
  • The cause of flow mark defect is known as non-uniform temperature of mold surface when the flow front meets the cold cavity. The exact definition and classification of Flow mark is not clear because the mechanism of flow mark is not figured out till now. Any injection molding analysis software can not predict the flow mark phenomena. To solve weldline and flow mark defects, the gate thickness is reduced to increase the melt front velocity and the melt front velocity of the flow mark area is increased from 82.3mm/s to 104.7mm/s. In addition, the bulk temperature of the flow mark area is increased from $178.3^{\circ}C$to $215.2^{\circ}C$ by adding a cold slug well. The flow mark phenomena can be greatly reduced by increasing the flow front velocity and elevating the bulk temperature.

CAE Analysis and Optimization of Injection Molding for a Mobile Phone Cover (휴대폰 커버 사출성형의 CAE 해석 및 최적화)

  • Park, Ki-Yoon;Kim, Hyeon-Seong;Kang, Jin-Hyun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.60-65
    • /
    • 2012
  • This paper deals with an CAE analysis and optimization of injection molding for a mobile phone cover. Two design goals are established in the optimization; one is to switch over the feed system from cold runner to hot runner for the purpose of reducing material costs, and the other is to minimize the warpage in order to improve product quality. By the full-factorial experiments for design parameters, we showed that the cold runner design could be changed to the hot runner design by replacing the current resin with a new resin of higher fluidity. In addition, we could significantly reduce the warpage of the cover product under the hot runner system by optimizing packing pressure and packing time.

Fluidic oscillation characteristics of plastic flow meter with the variation of cross-sectional shape of splitters (스플리터 단면형상변화에 따른 플라스틱 유량계의 유동진동특성)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, design technology of a non-mechanical flow meter using fluidic oscillation generated during the fluid flow in the chamber was investigated. To with respect to design a splitter, which is the most important factor in fluid oscillation, a transient flow simulation analysis was performed for three types of shapes and changes in inlet flow velocity. The oscillation characteristics with respect to the time in each case were compared, and it was confirmed that the SM03 model was the best among the presented models. In addition, the FFT analysis of the fluid oscillation results for the SM03 model was used to obtain a linear correlation between the flow velocity change and the maximum frequency, and a frequency of 20.957 (Hz/m/s) per unit flow velocity was obtained. Finally, injection molding simulation and molding experiment of the chamber with the designed splitter were performed.