• Title/Summary/Keyword: mold material

Search Result 839, Processing Time 0.025 seconds

A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process (파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구)

  • Lee, Chun-Kyu;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

Fabrication of Field-Emitter Arrays using the Mold Method for FED Applications

  • Cho, Kyung-Jea;Ryu, Jeong-Tak;Kim, Yeon-Bo;Lee, Sang-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The typical mold method for FED (field emission display) fabrication is used to form a gate electrode, a gate oxide layer, and emitter tip after fabrication of a mold shape using wet-etching of Si substrate. However, in this study, new mold method using a side wall space structure was developed to make sharp emitter tips with the gate electrode. In new method, gate oxide layer and gate electrode layer were deposited on a Si wafer by LPCVD (low pressure chemical vapor deposition), and then BPSG (Boro phosphor silicate glass) thin film was deposited. After then, the BPSG thin film was flowed into the mold at high temperature in order to form a sharp mold structure. TiN was deposited as an emitter tip on it. The unfinished device was bonded to a glass substrate by anodic bonding techniques. The Si wafer was etched from backside by KOH-deionized water solution. Finally, the sharp field emitter array with gate electrode on the glass substrate was formed.

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

Development of Injection Moulding Method of Sabot using Polyetherimide Composite Material (PEI계 복합 재료를 이용한 탄자 운반체의 사출 성형 기술 개발에 관한 연구)

  • 정태형;이범재;하영욱;이성계
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.269-274
    • /
    • 2001
  • This research covers the development of new technique for composite injection molding of high stiffness Sabot. An analysis of polymer resin is performed by means of making test specimen mold and doing test with accordance of ASTM test guidelines. Structural analysis and simulation of injection molding process are carried out in order not only to estimate but also to predict the characteristics of molding stresses what both product and structure of mold may have. For structural analysis software, Moldflow and LS-dyna are used and universal test machine is utilized for evaluating performance of sabot. Cases of adopting this material to sabot are not announced yet in domestic academic world. In addition to that, materials for polymer-metal mixed injection molding are imported on the whole due to deficient level of domestic technology. Therefore, this new developed injection molding technique using PEI material can make it available to ensure the technology of making mold, injection and design. Finally, this technique may be applicable to another sabot having different radius of warheads from now on.

  • PDF

Full Three Dimensional Rheokinetic Modeling of Mold Flow in Thin Package using Modified Parallel Plate Rheometry (개선된 회전형 레올로지 측정법을 이용한 박형 반도체 패키지 내에서의 3차원 몰드 유동현상 연구)

  • LEE Min Woo;YOO Min;YOO HeeYoul
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • The EMC's rheological effects on molding process are evaluated in this study. When considering mold processing for IC packages, the major concerning items in current studies are incomplete fill, severe wire sweeping and paddle shifts etc. To simulate EMC's fast curing rheokinetics with 3D mold flow behavior, one should select appropriate rheometry which characterize each EMC's rheological motion and finding empirical parameters for numerical analysis current studies present the new rheometry with parallel plate rheometry for reactive rheokinetic experiments, the experiment and numerical analysis is done with the commercial higher filler loaded EMC for the case of Thin Quad Plant Packages (TQFP) with package thickness below 1.0 mm. The experimental results and simulation results based on new rheometry matches well in point of the prediction of wire sweep, filling behavior of melt front advancement and void trapping position.

  • PDF

Repair of Mold by Cold Spray Deposition and Mechanical Machining (저온 분사 적층과 절삭가공을 이용한 금형보수 사례연구)

  • Kang Hyuk-Jin;Jung Woo-Gyun;Chu Won-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.101-107
    • /
    • 2006
  • Cold gas dynamic spray or cold spray is a novel manufacturing method for coatings. Cold spray is a high rate and direct material deposition process that utilizes the kinetic energy of particles sprayed at high velocity (300-1,200m/s). In this research, a technique to repair the damaged mold by cold spray deposition and mechanical machining was proposed. An aluminum 6061 mold with three-dimensional surface was fabricated, intentionally damaged and material-added by cold spray, and its original geometry was re-obtained successfully by Computer Numerical Control (CNC) machining. To investigate deformation of material caused by cold spray, deposition was conducted on thin aluminum plates ($100mm{\times}100mm{\times}3mm$). The average deformation of the plates was $205{\sim}290{\mu}m$ by Coordinate Measurement Machine (CMM). In addition, the cross section of deposited layer was analyzed by scanning electron microscopy (SEM). To compare variation of hardness, Vickers hardness was measured by micro-hardness tester.

A study on the surface roughness of STD 11 material according to the helix angle of ball endmill (볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments (표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화)

  • Kim, Dong-Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

A Study for In-process Monitoring in Press die (프레스금형 형내 모니터링에 대한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.692-696
    • /
    • 2017
  • The shape of press components is becoming increasingly complex due to customer demands, process shortening and cost savings. In addition, the stability of the pressing process frequently varies during mass production due to the influence of many factors. In order to ensure the process stability, it is necessary to establish a process in which reproducibility is realized in tolerance, which is sufficient for advance study of shape, material, press, mold and lubrication. However, unforeseen changes in process parameters cause disruptions in production line shutdowns and production planning. In this paper, we introduce a method to monitor a real time process by applying a sensor to a press mold. A non-contact type sensor for measuring the flow of a sheet material and an example of an experiment using the optical sensor which is highly applicable to mass production are presented. An optical sensor was installed in a cylindrical drawing mold to test its potential application while changing the material, blank holder force, and drawing ratio. We also quantitatively determined that the flow of other sheet materials was quantified locally using a square drawing die and that the measured value was always smaller than the drawing depth due to the material elongation. Finally, we propose a field that can be used by attaching the sensor to the press mold. We hope that the consequent cost reduction will contribute to increasing global mold competitiveness.

A study on CIM construction for the plastic fan design manufacturing (플라스택 팬 설계, 제조의 CIM 구축을 위한 연구)

  • Choi, Yang-Ho;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1470-1479
    • /
    • 1997
  • In this study, the plastic fan with high efficiency and low noise was designed and the capacity of the wind and the wind pressure were analysed and verified by CAE. After designing the metallic mold using the metallic mold design data, and the the metallic mold design was reformed by analysing the process of the material stream and injection filling by CAE. Also the metallic mold cutting data were formed using the metallic mold design data. These cutting data was used to produce the fan electrode by a machining center and then this electrode were used to manufacture the metallic mold by cutting the fan cavity by an electrical spark machine. The purpose of this study is to find out the sub-optimal condition on the productivity and improvement in quality of the plastic fan by integrating a series of this process with a computer.