• Title/Summary/Keyword: moisture variability

Search Result 101, Processing Time 0.023 seconds

Spatio-temporal Variability of Soil Moisture within Remote Sensing Footprints in Semi-arid Area (건조지역 원격탐사 footprint 내 토양수분의 시공간적 변동성 분석)

  • Hwang, Kyotaek;Cho, Hun Sik;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.285-293
    • /
    • 2010
  • Soil moisture is a key factor to control the exchange of water and energy between the surface and the atmosphere. In recent, many researches for spatial and temporal variability analyses of soil moisture have been conducted. In this study, we analyzed the spatio-temporal variability of soil moisture in Walnut Gulch Experimental Watershed, Arizona, U.S. during the Soil Moisture Experiment 2004 (SMEX04). The spatio-temporal variability analyses were performed to understand sensitivity of five observation sites with precipitation and relationship between mean soil moisture, and its standard deviation and coefficient of variation at the sites, respectively. It was identified that log-normal distribution was superior to replicate soil moisture spatial patterns. In addition, precipitation was identified as a key physical factor to understand spatio-temporal variability of soil moisure based on the temporal stability analysis. Based on current results, higher spatial variability was also observed which was agreed with the results of previous studies. The results from this study should be essential for improvement of the remotely sensed soil moisture retrieval algorithm.

Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming (노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석)

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Comparison the Variability of Multi-channel Soil Moisture Data Using PSR C-band and ESTAR L-band Estimates (PSR C-band 및 ESTAR L-band 측정치를 사용한 다중 채널 원격측정 토양수분 자료의 변화도 비교)

  • Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.329-334
    • /
    • 2006
  • The spatial variability of the L- and C- band large scale remotely sensed soil moisture data, obtained during the Southern Great Plain 1999 Experiment (SGP'99), was characterized. The results demonstrate that soil moisture data using L-band show the break in statistical symmetry (multiscaling behavior) with the variation of scale of observation, which is similar to that of the soil property such as sand content. Also, soil moisture data using C-band show single scaling behavior with the variation of scale of observation, which is similar to that of the vegetation condition. The results should be considered during downscaling the Global soil moisture data using AMSR instrument.

Exploration of Feedback Structures Between Surface Moisture and Aeolian Processes with a Modified Sand Slab Model (수정 모래판 모형을 이용한 지표수분 함량과 비사이동의 되먹임 구조 탐색)

  • Rhew, Hosahng
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.61-81
    • /
    • 2017
  • Traditional approaches to surface moisture problems in the context of aeolian research have focused on the initiation of sand movement, developing various models for predicting threshold velocity on a wet surface. They have been unsatisfactory, however, in explaining field observations because they have not incorporated spatiotemporal variability of surface moisture, the interactions between transported sand grains and surface, and the role of aeolian transport in controlling surface moisture. As Nield (2011) showed, a simplified numerical model can be used to investigate this issue. This research aims to explore the feedback structures between aeolian transport and surface moisture using a modified sand slab model. Key modifications are the introduction of simultaneous updating scheme for all the slabs and moisture-assigning procedures with and without aeolian transport. The major findings are as follows. Moist surface conditions suppress sand slab movement, leading to the development of smaller-scale topography. Available sands for aeolian transport are determined by the vertical patterns of moisture content with its variations from groundwater to the surface. Sand patches on a wet surface act as a localized source area. Sand movement drives immediate changes in surface moisture rather than time-lag reponses, mostly when moist conditions are dominant.

Comparison of the Spatial Variability of C- and L-Band Remotely Sensed Soil Moisture (원격측정 토양수분자료, (C-band 측정치 vs. L-band 측정치)의 공간변화도 비교)

  • Kim, Gwangseob;Lim, TaeKyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.705-708
    • /
    • 2004
  • The spatial variability of the L- and C- band large scale remotely sensed soil moisture data, obtained during tire Southern Great Plain 1999 (SGP'99), was characterized. The results demonstrate that soil moisture data using L-band show the break in statistical symmetry (multiscaling behavior) with the variation of scale of observation, which is similar to that of the soil property such as sand content. Also, soil moisture data using C-band show single scaling behavior with the variation of scale of observation, which Is similar to that of the vegetation condition.

  • PDF

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Spatial and Seasonal Variability of Soil Moisture Properties along Transect Line on a Forest Hillslope in the Cheong-Mi Catchment (청미천 유역 내 산림사면에서 단면선에 따른 토양수분특성의 공간적 계절적 변동)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Jung, Sung-Won;Lee, Yeon-Gil;Lee, Jung-Hoon;Kim, Su-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.45-57
    • /
    • 2015
  • Soil moisture is critical for understanding the spatial-temporal variability of hydrologic processes. The distributions of soil moisture have been explored along transect line in hillslope hydrology. In this study, we measured several soil moistures along transect lines during ten-month period at a hillslope located the Cheong-mi catchment. The soil moisture properties were expressed by simple statistical methods (average, standard deviation, and recession slope) and analyzed in terms of soil depths and transects from the seasonal context. Supplementary studies were also performed about the effect of location, topography and soil texture to the soil moisture responses. The spatial distributions of average soil moisture at deep soil layer were distinguished from those at near surface due to the possibility of expected factors such as subsurface lateral flow from upslope, preferential flow and existence of bedrock. The soil moistures in combined line affected from significant contribution of upper transect line were relatively higher(wetter), low variability compared to those in other transect lines and seemed to be under stabilization process. There are confirmed heterogeneity of soil moisture variation related with preferential flow and significant influence of soil texture for soil moisture properties in upslope.

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020 (1981-2020년 기간 동아시아 지역 산불 발생 위험도의 변동성 및 변화 특성)

  • Lee, June-Yi;Lee, Doo Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.

Evaluation of the Impact of Land Surface Condition Changes on Soil Moisture Field Evolution (지표면 조건의 변화에 따른 토양수분의 변화 평가)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.795-806
    • /
    • 1998
  • Soil moisture is affected by regional climate, soil characteristics and land surface condition, etc,. Especially, the changes in land surface condition is more than other factors, which is mainly due to rapid urbanization and industrialization. This study is to evaluate how the change of land surface condition impacts on soil moisture field evolution using a simple model of soil moisture dynamics. For the quantification of soil moisture field, the first half of the paper is spared for the statistical characterization based on the first- and second-order statistics of Washita '92 and Monsoon '90 data. The second half is for evaluating the impact of land cover changes through simulation study using a model for soil moisture dynamics. The model parameters, the loss rate and the diffusion coefficient, have been estimated using the observed data statistics, where the changes of surface conditions are considered into the model by applying various parameter sets with different second-order statistics. This study is concentrated on evaluating the impact due to the changes of land surface condition variability. It is because we could easily quantify the impact of the changes of its areal mean based on the linear reservoir concept. As a result of the study, we found; (1)as the variability of land surface condition, increases, the soil moisture field dries up more easily, (2)as the variabilit y of the soil moisture field is the highest at the beginning of rainfall and decreases as time goes on to show the variability of land surface condition, (3)the diffusion effect due to surface runoff or water flow through the top soil layer is limited to a period of surface runoff and its overall impact is small compared to that of the loss rate field.

  • PDF