• Title/Summary/Keyword: moisture holding

Search Result 327, Processing Time 0.026 seconds

Utility of Hydrophilic Polymer for Green Technology Development in Green Roofs Using Rainwater (빗물활용 옥상녹화 녹색기술 개발을 위한 친수성 중합체의 효용성)

  • Ju, Jin-Hee;Yang, Ji;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1469-1476
    • /
    • 2012
  • Hydrophilic polymer is suitable as soil conditioners for green roofs that use rainwater, due to promotion of water retention capacity as well as enhancement of the water absorbing capacity. The objective of the present study was to investigate the effects of different levels of hydrophilic polymer concentrations (0, 0.1, 0.2, 0.4, 0.8% w/w) on the water holding capacity and growth response of 6 species in soils amended with hydrophilic polymer in 5 cm of soil thickness on green roofs. The results showed that the water holding capacity of the amended soil improved with increasing amount of applied polymer. The application of 0.8% w/w of the polymer increased the soil moisture by 87% compared to the control, and decreased slowly in green roofs during an arid period. The growth of Sedum spurium 'Dragon's blood' and Lampranthus spectabilis increased significantly and had greater than 60% relative coverage with higher hydrophilic polymer concentrations. However, Juniperus chinensis var. sargentii and Euonymus fortunei var. radicans had no significant differences upon change of hydrophilic polymer concentrations. In Carex kujuzana and Carex morrowii 'Aurea variegata', growth decreased with increase of hydrophilic polymer concentrations. 30 days after planting, Juniperus chinensis var. sargentii, Euonymus fortunei var. radicans, Carex kujuzana, and Carex morrowii 'Aurea variegata' died back due to lowest soil thickness (5 cm), but Sedum spurium 'Dragon's blood' and Lampranthus spectabilis had greater than 90% survival.

Effect of Seawater on the Technological Properties of Chicken Emulsion Sausage in a Model System

  • Lee, Sol Hee;Choe, Juhui;Kim, Jong-Chan;Kim, Hack Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • The aim of this study was to compare the effect of seawater to that of conventional salt (NaCl) on the technological properties of chicken emulsion sausages in a model system. Chicken sausages were prepared with seawater at three levels (10%, 15%, and 20%) in iced water (10%, 5%, and 0%, respectively) or with iced water (20%) and salt (1.2%). There was no difference in pH values and fat loss from emulsion stability between the two treatments. In general, with an increase in the amount of seawater, the water holding capacity (cooking yield and water loss), protein solubility (total and myofibrillar protein), and viscosity were increased. The addition of 20% seawater induced greater (p<0.05) water holding capacity, protein solubility, and viscosity compared to the control sample treated with salt, which was accompanied by an increase in the level of myosin heavy chain protein of samples with 10% and 20% seawater. Furthermore, addition of at least 15% seawater increased all of the main textural properties except for cohesiveness along with the moisture of sausage, whereas the fat and protein contents were decreased. Based on these results, the addition of ≥15% seawater to chicken breast sausage can induce equivalent or enhanced technological properties to those induced with salt, including water holding capacity, protein solubility, viscosity, and textural properties.

Physical Properties of Rice Hull and Straw for the Handling Facilities

  • Oh, Jae H.;Kim, Myoung H.;Park, Seung J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.283-292
    • /
    • 1996
  • This study was performed to determine the physical properties of rice hull and straw which could be used for an optimum design and operation of the handling facilities for these rice crop by-products. The properties measured were kinetic friction coefficient , bulk density, and dynamic and static angle of repose. Rice hulls with moisture content of 13% and 21% were used throughout the test while rice straws of 10% and 16% moisture were chopped into 10mm length and used for the test. Friction coefficient was calculated from the horizontal traction forces measurement when a container holding the mass of rice hull and straw was pulled over mild steel. PVC, stainless steel, and galvanized steel surface by a universal testing machine. Bulk density was measured by an apparatus consisting of filling fundel and a receiving vessel. Dynamic angle of repose which is the angle at which the material will stand when piled was calculated from the photos of bulk samples after they were flowed by gravity and accumulated on a circular surface. Static angle of repose which is the angle between the horizontal and the sloping side of the material left in the container when discharging was also measured in the similar way. Results and conclusions from this study are summarized as follows . 1. Kinetic friction coefficient of both rice hull and straw were in the range of 0.26 -0.52 and increased with the moisture content. The magnitude of friction increased in the order of galvanized steel, stainless steel, PVC ,and mild steel. 2. Bulk densities of rice hull decreased while those of rice straw increased with moisture content increase . Average bulk densities of rice hull and straw were 96.8 and 74.7kg/㎥, respectively. 3. Average dynamic angle of repose for rice straw was 32.6$^{\circ}$ and those for 13% and 21% moisture rice hull were 38.9$^{\circ}$ and 44.9$^{\circ}$ , respectively. 4. Static angles of repose for both rice hull and straw showed increase with the moisture content. The values were 75.2\ulcorner and 80.2$^{\circ}$ for 13% and 21% moisture rice hull, respectively. Rice straws having 10% and 16% moisture content showed 87.3% and 89.2$^{\circ}$ static angle of repose, respectively.

  • PDF

Effects of Various Thawing Methods on the Quality Characteristics of Frozen Beef

  • Kim, Young Boong;Jeong, Ji Yun;Ku, Su Kyung;Kim, Eun Mi;Park, Kee Jae;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.723-729
    • /
    • 2013
  • In this study, the quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen beef were examined. The loin and round of second grade Hanwoo were sliced into 5-7 cm thickness and packed with aerobic packaging. The packaged beef samples, which were frozen by air blast freezing at $-45^{\circ}C$ and electro-magnetic freezing at $-55^{\circ}C$, were thawed by 4 thawing methods with refrigeration ($4{\pm}1^{\circ}C$), room temperature (RT, $25^{\circ}C$), cold water ($15^{\circ}C$), and microwave (2450 MHz). These samples were thawed to the point, which were core temperature reached $0^{\circ}C$. Analyses were carried out to determine drip and cooking loss, water holding capacity (WHC), moisture contents and sensory evaluation. Frozen beef thawed by microwave indicated a lower drip loss (0.66-2.01%) than the other thawing methods (0.80-2.50%). Cooking loss after electro-magnetic freezing indicated 52.0% by microwave thawing for round compared with 41.8% by refrigeration, 50.1% by RT, and 50.8% by cold water. WHC thawing by microwave with electro-magnetic freezing didn't showed any difference depending on the thawing methods, while moisture contents was higher thawing by microwave with electro-magnetic freezing than refrigeration (71.9%), RT (75.0%), and cold water (74.9%) for round. The texture of sensory evaluation for round thawed by microwave result was the highest than refrigeration (4.7 point), RT (6.4 point) and cold water (6.6 point), while sensory evaluation was no significant difference. Therefore, it was shown that microwave thawing is an appropriate way to reduce the deterioration of meat quality due to freezing.

The Effect of Jellyfish (Nemopilema nomurai) Fertilizer on Tree Growth in Hillside Erosion Control Works

  • Kim, Yong-Rae;Kim, Suk-Woo;Damdinsuren, Enkhjargal;Ezaki, Tsugio;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.227-231
    • /
    • 2012
  • Reforestation is one of the most important ways to reduce erosion soil. The objective of this study was to determine the effect of jellyfish soil amendment on seedling growth for reforestation. 100g jellyfish soil amendment was applied into planting hole for the purpose of improvement of the Chamaecyparis obtusa seedling growth. Results showed that during growing period, mortality were 4.4% for the fertilized group and 8.3% for control group. The seedling average height and root diameter were 95.0 cm and 1.07 cm in fertilized group and 40.6 cm and 0.74 cm in control group. The fertilized group was found to be superior (by 1 to 5%) to control group in terms of mortality rate, seedlings height, and root diameter. The positive growth of the fertilized group can be due the increase in soil moisture and the higher availability of nutrients to the plants from jellyfish fertilizer.

Evaluation of the Quality of Beef Patties Formulated with Dried Pumpkin Pulp and Seed

  • Serdaroglu, M.;Kavusan, H.S.;Ipek, G.;Ozturk, B.
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The objective of this study was to investigate quality attributes of beef patties formulated with dried pumpkin pulp and seed mixture (PM). Four different meatball formulations were prepared where lean was replaced with PM as C (0% PM), P2 (2% PM), P3 (3% PM) and P5 (5% PM). Utilization of PM decreased moisture and increased ash content of the patties. Incorporation of 5% PM (P5) increased the pH value of both uncooked and cooked patties compared to C group. Increasing levels of PM increased water-holding capacity. No significant differences were found in cooking yield and diameter change with the addition of PM. Incorporation of PM increased fat and decreased moisture retention of the samples. $a^*$ values were decreased with PM addition, where $L^*$ values did not differ among treatments and $b^*$ values were similar in C, P3 and P5 samples. Textural properties were mostly equivalent to control samples with the incorporation of PM even at higher concentrations. The addition of PM did not significantly affect any of the sensory scores tested. These results indicated that utilization of PM presents the opportunity to decrease the amount of meat besides to improve healthier profile without causing negative changes in physical, chemical and technological quality of beef patties.

Quality Characteristics of Injeulmi Containing Different Ratios of Citrus Mandarin Powder (감귤분말 첨가량에 따른 인절미의 품질 특성)

  • Kim, Chul-Woong;Song, Eun
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.293-301
    • /
    • 2009
  • The purpose of this study was to investigate the quality characteristics of Gamgyul-Injeulmi containing different ratios of Citrus mandarin powder(0, 3, 6, 9 and 12%). The moisture content of the control group was 45.37%. As the ratio of Citrus mandarin powder increased, moisture content decreased. The water holding capacity of glutinous rice flour with Citrus mandarin powder decreased gradually in proportion to the amount of Citrus mandarin powder added. An analysis of Hunter's color values for Gamgyul-Injeulmi indicate that the addition of Citrus mandarin powder leads to lower L value and higher a and b value compared to the control. Textural analysis of Gamgyul-Injeulmi showed that the hardness, cohesiveness, gumminess and chewiness increased as Citrus mandarin powder was added, whereas adhesiveness and springiness decreased. According to the sensory evaluation of Gamgyul-Injeulmi, as the ratio of Citrus mandarin powder was increased, the flavor, sweetness and hardness all increased. Gamgyul-Injeulmi with 6% Citrus mandarin powder was rated as the best in terms of color and for overall preference in the sensory evaluation.

An Experimental Study on the Performance of Heat Pump Assisted Batch Dryer Using HFC134a (HFC134a를 사용한 열펌프 건조기의 성능에 관한 실험적 연구)

  • Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.3-11
    • /
    • 1997
  • In conventional heat and vent dryer, both sensible and latent heat could not be recovered from the exhaust air, but this problem could be solved by introducing a heat pump to a conventional dryer, having a connection with cooling, dehumidifying and heating of heat pump. In this work, HFC134a as a substitute refrigerant of CFC12 adopted in heat pump and a batch type is also introduced. The variables affected on the system performance are holding temperature of a drying chamber, bypass air ratio, degree of superheat and refrigerant flowrate, etc. The moisture contents were decreased curvilinearly in the range of $86{\sim}75%$ on the wet basis. Under the constant drying temperature, the face velocity plays an important role to the drying performance. The COPs are increased in accordance with the air velocity, on the other hand the SMERs are gradually decreased.

  • PDF

Influence of Initial Water Content, Specific Surface, Air Drying and Freezing-thawing Action on the Liquid Limit of Soils (초기함수비, 비표면적, 풍건 및 동결.융해작용이 흙의 액성한계에 미치는 영향)

  • 류능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.116-124
    • /
    • 1996
  • The purpose of The work described in this paper is to clear up the initial moisture content, specific surface, air drying and freezing-thawing process on liquid limit of clayey soils distributed widely at estuary of three main rivers in the west coast. To this end, a series of tests were conducted on clayey soils samples with natural state and treated state. From the test results, the liquid limit was decreased with decrement of initial moisture content, air drying process, and freezing-thawing cycles and increased with increment of specific surface. The specific surface which influenced on the liquid limit is over $25 m^2$m$^2$/g, and their relationships are well formulated. Air drying process is expected to improve the engineering properties of the soils such the pro-water properties were changed to anti-water proper-ties through lowering of water holding as resulted to incline from A-7-5 to A-5 on the soil classificaction plastic chart. The freezing-thawing process decreased 20% of liquid limit, especially under the first cycle of the behavious, as a result of above mentioned reasons, phase change of soil-water system brought the decrement of specific surface and affected to the liquid limit.

  • PDF

Effects of Hot Boning and Soy Sauce on the Processing Properties of Semi-dried Beef Jerky

  • Han, Doo-Jeong;Lee, Eui-Soo;Lee, Si-Kyung;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • The objective of this study was to examine the effect of hot-boning and soy sauce as a curing agent on the processing properties of beef jerky. Beef jerky was prepared under the following four treatment conditions; Beef jerky with cold-boned beef and salt solution, beef jerky with cold-boned beef and soy sauce solution, beef jerky with hot-boned beef and salt solution, and beef jerky with hot-boned beef and soy sauce solution. Cured meat and jerky containing hot-boned beef had a significantly higher pH, water holding capacity (WHC), moisture content, Myofibrillar fragmentation index (MFI), processing yields, tenderness, and sensorial scores than samples containing cold-boned beef (p<0.05). Regardless of the raw materials, the jerky containing soy sauce had a significantly lower pH, WHC, moisture content, salt content, TBA, CIE $L^*$ and $b^*-$ values, and significantly higher MFI, mechanical tenderness, and sensorial scores (p<0.05). Based on these findings, we concluded that the use of hot-boned meat and soy sauce was the most effective boning method and curing agent during beef jerky processing.