• Title/Summary/Keyword: moisture evaporation

Search Result 217, Processing Time 0.035 seconds

Mechanecal Prolperties of Concerte as the Condition of Contained Water (함수상태에 따른 콘크리트의 역학적성상)

  • 김인수;오창희
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.127-134
    • /
    • 1992
  • Generally speaking, the internal moisture of concrete is mainly distributed in inner part and concrete surface which is exposed are dned according to influence of temperature and humidity. So, the properties which are compressive strength, modular elasticity, and volume change are different at each part even in same concrete. This is because moisture distribution is changed according to the evaporation and move ment of moisture, exist in the inner porosity of concrete. Therefore, it is necessary that we investigate the properties of concrete according to moisture distribution. The purpose of this study is investigating correlation between the moisture content and mechanical properties in concrete. Compressive and tenslle strength decrease according to increasing moisture content, but modular elas ticity increase. Those increasing or decreasing ratio at drying ratio 100% (absolute dries) is as follows in comparative of drying ratio 0 % (saturated condition).tion).

THE PHYSICALLY-BASED SOIL MOISTURE BALANCE MODEL DEVELOPMENT AND APPLICATIONS ON PADDY FIELDS

  • Park, Jae-Young;Lee, Jae-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.243-256
    • /
    • 2000
  • This physically-based hydrologic model is developed to calculate the soil-moisture balance on paddy fields. This model consists of three modules; the first is the unsaturated module, the second is the rice evapotranspiration module with SPAC(soil-plant-atmospheric-continuum), and the third is the groundwater and open channel flows based upon the interrehtionship module. The model simulates the hydrlogical processes of infiltration, soil water storage, deep perocolation or echarge to the shallow water table, transpiration and evaporation from the soil surface and also the interrelationship of the groundwater and river flow exchange. To verify the applicability of the developed model, it was applied to the Kimjae Plains, located in the center of the Dongjin river basin in Korea, during the most serious drought season of 1994. The result shows that the estimated water net requirement was 757mm and the water deficit was about 5.9% in this area in 1994. This model can easily evaluate the irrigated water quantity and visualize the common crop demands and soil moisture conditions.

  • PDF

A Study to Determine the Consumptive Use of Water for Upland Crops (전작물의 필요수량 결정을 위한 연구)

  • 김철회;유시창;이근후;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.37-45
    • /
    • 1980
  • This study was carried out to investigate the consumptive use of water for red peppers and soy beans. The correlation between the soil moisture contents and the selected meteorological factors during the growing season was analyzed. Characteristics of the drought at Jinju, Yeosu, Gwangju, and Mokpo area were figured out in view of frequency analysis. The results obtained from this study could be used as a reasonable criteria for the estimation of the duty of water in the design of upland irrigation systems. Obtained results are summarized as follows: 1. Red peppers were grown at the three levels of soil moisture contents; 75 percent, 50 percent, and 25 percent, respectively. The red pepper grown at the 75 percent of soil moisture content showed the highest yield. The total evapotranspiration during the growing season from red peppers was 471. lmm, which was 86.6mm less than the pan evaporation. 2. The soy bean grown at 75 percent soil moisture content showed the highest yield, although there was no signicant difference in yields among treatments. The total evapotranspiration during the growing season from the soy bean was 342.8 mm, which was 119.2mm less than the pan evaporation. 3. Coefficients of consumptive use(k) and meteorological data are shown on Table-9. 4. The significant correlations between the evapotranspiration and the humidity and daily temperature range were observed. Results are shown on Table-11.. Evaporanspiration can be easily estimated from the humidity and daily temperature range by using the equation...... (1) Ept=4.808-0.041H+0.207T.......(1) where, Ept; evapotranspiration(mm/day) H ; humidity(%) T ; daily temperature range ($^{\circ}C$) 5. The variations of soil moisture content during the growing season at the soil depth of 5cm, 15cm, and 45cm are shown on Fig. 4~9. The results of the correlation analysis between the evapotranspiration from the crops and the soil moisture content are shown on Table-12. The evapotranspiration can be estimated from soil moisture content at the different depth of the soil by using the equation....... (2). Ept = 3.433 - 0. 364M1 +0. 359M$_2$- 0. 055M$_3$....... (2) where, Ept; evapotranspiration (mm/day) M1 soil moisture meter reading at 5cm depth M$_2$; " 15cm " M$_2$; " 40cm " 6. The estimated probab]e successive dry days in selected areas are shown on Table 13. Gumbel-Chow method was used to calculate the probable successive dry days. Further investigation are required to obtain the more detailed and reliable results.

  • PDF

A Study on Real-Time Monitoring for Moisture Measurement of Organic Samples inside a Drying Oven using Arduino Based on Open-Source (오픈 소스 기반의 아두이노를 이용한 건조기 내 유기 시료의 실시간 수분측정 모니터링에 관한 연구)

  • Kim, Jeong-hun
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.85-99
    • /
    • 2022
  • Dryers becoming commercially available for experimental and industrial use are classified to general drying oven, hot-air dryer, vacuum dryer, freezing dryer, etc. and kinds of them are various from the function, size and volume, etc. But the moisture measurement is not applied although it is important factor for the quality control and the performance improvement of products, and then now is very passive because the weight is weighed arbitrarily after dry-end. Generally the method for measuring moisture is divided by a direct measurement method and a indirect measurement method, and the former such as the change of weight or volume on the front and rear of separation of moisture, etc. is mainly used. Relatively a indirect measurement is very limited to apply due to utilize measurement apparatuses using temperature conductivity and micro-wave etc. In this research, we easily designed the moisture measurement system using the open-source based Arduino, and monitored moisture fluctuations and weight profiles in the real-time without the effect of external environment. Concretely the temperature-humidity and load cell sensors were packaged into a drying oven and the various change values were measured, and their sensors capable to operate 60℃ and 80℃ were selected to suitable for the moisture sensitive materials and the food dry. And also the performance safety using the organic samples of banana, pear, sawdust could be secured because the changes of evaporation rate as the dry time and temperature, and the measurement values of load cell appeared stable response characteristics through repeated experiments. Hereafter we judge that the reliability can be improved increasingly through the expansion of temperature-humidity range and the comparative analysis with CFD(Computational Fluid Dynamics) program.

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

Impact of BS replacement mortar's application to ERCO on moisture evaporation and contraction changes (BS 치환 모르타르의 ERCO 도포시 수분증발 및 수축변화에 미치는 영향)

  • Baek, Cheol;Lee, Jae-Hyeon;Hwang, Chan-Woo;Jang, Deok-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.115-116
    • /
    • 2016
  • This study applied BS replacement mortar's ERCO to see what impact it has on moisture evaporation and contraction changes, and resulted in the following. Depending on the rate of change in length according to the cure method of BS replacement mortar, high-strength areas were shown to have a bigger increase in the rate of change in length than regular or low-strength areas, and differences in rate of change in length due to ERCO cure methods were shown to be slight. For rate of changes in mass, on the whole there was an increase in the order of dry curing, cover curing, 7-day water curing, and28-day water curing. A comprehensive view says that after removal of test piece specimens, ERCO application did not expect a sufficient curing effect in the BS area.

  • PDF

Fuel Characteristics of Sewage Sludge in a Fluidized Bed Incinerator (유동상 소각로에서 하수 슬러지 연료 특성)

  • Choi, Jin-Hwan;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.81-91
    • /
    • 1999
  • Fuel characteristics of sewage sludge as required for the fluidized bed incinerators have been evaluated. Sewage sludge is basically a solid fuel with high percentage of moisture. Moisture content of the fuel directly affects the heating value of the fuel and the exhaust gas composition. When the sludge of transported into the incinerator, sludge cake is subject to the mixing, break-up and heat-up. Fluidization process would enhance these physical processes. The sludge fuel could then undergo the moisture evaporation and devolatilization process. Subsequent oxidation of volatiles as well as the remaining char would then follow. Sludge samples are characterized with high percentage of volatiles out of total combustibles. Quantitative understanding of above listed subprocesses would certainly help in the utilization of fluidized bed incinerators. A limited set of fuel characterization tests including calorimetric analysis, proximate analysis, elemental analysis and thermogravimetric analysis were conducted for the selected sludge samples. The measurement reasults of sludge samples were reported along with some published data. Limited experience in the actual incinerator plant is also presented.

  • PDF

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF