• Title/Summary/Keyword: modulus of thermal expansion

Search Result 173, Processing Time 0.02 seconds

NUMERICAL APPROACH TO MICROSTRUCTURAL CHARACTERIZATIONS FOR DENSE AND POROUS THERMAL BARRIER COATINGS

  • Kim, Seok-Chan;Go, Jae-Gwi;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.223-231
    • /
    • 2011
  • During spray coating, especially in an air plasma spray (APS), pores, cracks, and splat boundaries are developed and those factors exert influence on thermomechanical properties such as elastic modulus, thermal conductivity, and coefficient of thermal expansion. Moreover, the thermo mechanical properties are crucial elements to determine the thermoelastic characteristics, for instance, temperature distribution, displacements, and stresses. Two types of thermal barrier coating (TBC) model, the dense and porous microstructures, are taken into account for the analysis of microstructural characterizations. $TriplexPro^{TM}$-200 system was applied to prepare TBC samples, and the METECO 204 C-NS powder is adopted for the relatively porous microstructure and METECO 204 NS powder for the dense microstructure in the top coat of TBCs. Governing partial differential equations were derived based on the thermoelastic theory and approximate estimates for the thermoelastic characteristics were obtained using a finite volume method for the governing equations.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Basic Properties of Dam Concrete using Fly Ash (Fly Ash를 이용한 댐 콘크리트의 기본 물성에 관한 연구)

  • 송영철;우상균;방기성;정원섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.619-624
    • /
    • 1999
  • The purpose of this study is to provide the optimum mix design of fly ash concrete to be placed at the concrete face rockfill dam for pumped storage power plats. The basic performance tests including compressive strength, modulus of elasticity, unit weight, coefficient of thermal expansion, shrinkage, adiabatic temperature rise and analysis of thermal stress were conducted for fly ash concrete. From this study, the fly ash concrete represented the better results in the aspects of basic performance and economy than ordinary portland cement concrete. Especially the concrete mix design containing 15% of fly ash is recommended to be applied in the construction of the concrete face rockfill dam for pumped storage power plants.

  • PDF

Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition (초음속 저온분사법에 의해 적층된 알루미늄 층의 재료 물성)

  • Lee, Jae-Chul;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.88-95
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold-spray uses supersonic gas flow to carry metallic powders to the substrate. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but in this study macro scale deposition was conducted. Properties of aluminum layer by cold-spray deposition such as coefficient of thermal expansion (CTE), modulus of elasticity. hardness, and electric conductivity were measured. The results showed that properties of aluminum layer by cold-spray deposition were different from properties of pure aluminum and aluminum alloy.

우주급 경통 열-흡습 설계

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.108-113
    • /
    • 2005
  • Strucutral and hygrothermal analysis for a composite tube is carried out in this study, that provides critical parameters for the design of a highly dimensionally stable space telescope. Carpet plots for laminate effective engineering constants are generated and used for the best tube lay-ups with high elastic modulus and highly insensitive to thermal and moisture expansion, which is essential for maintaining optical alignment of opto-mechanical system under random force applied during a launch campaign and orbital thermal load. Despace in the longitudinal direction under hygrothermal load of the tubes constructed with the selected lay-ups is calculated for the validation of lay-up designs on the dimensionalstability. Dynamic analysis is also carried out to feature the resonant behaviour. A zig-zag triangular element accurately representing through thickness stress variations for laminated structures is developed in this study and incorporated into the structural and hygrothermal analysis.

  • PDF

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

Improved Thermal, Structural and Electrical Properties of Elastic-Epoxy Blends System

  • Lee, Kyoung-Yong;Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.230-235
    • /
    • 2004
  • In this paper, epoxy elasticity factors were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microscope) to improve toughness and reduce brittleness of existing epoxy resin. Dumbbell shaped specimens were made and tested at rates of 0, 20 and 35phr (part per hundred resins). TMA temperatures ranged from -2$0^{\circ}C$ to 20$0^{\circ}C$. Tg (glass transition temperature) of elastic epoxy was measured by thermal analysis. Also investigated were thermal expansion coefficient ($\alpha$), modulus and Tan$\delta$ (loss factor). And we analyzed structure through FESEM, could find elastic-factors of elastic epoxy that is not existing-epoxy. In addition, we measured permittivity and Tan$\delta$ for investigation of the electrical properties of elastic epoxy. Permittivity and Tan$\delta$ depend on elastomer composition. Namely, permittivity and Tan$\delta$ increase according to the elastomer contents. For experimental analysis results, 20phr was considered an excellent specimen.

Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.587-593
    • /
    • 2017
  • The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF