Browse > Article

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites  

Huang, Guang-Chun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Chung-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.33, no.6, 2009 , pp. 530-536 More about this Journal
Abstract
A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.
Keywords
cycloaliphatic epoxy; acidic anhydride; short fiber; thermal expansion; dynamic mechanical properties;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Kaynak, O. Orgun, and T. Tincer, Polym. Test., 24, 455 (2005)   DOI   ScienceOn
2 K. F. Rogers, L. N. Phillips, D. M. Kingston-Lee, B. Yates, M. J. Overy, J. P. Sargent, and B. A. McCalla, J. Mater. Sci., 12, 718 (1977)   DOI   ScienceOn
3 M.V. Alonso, M. L. Auad, and S. Nutt, Comp. Part A: Appl. Sci. Manufac., 37, 1952 (2006)   DOI   ScienceOn
4 C. Kaynak, A. Rikana, and T. Tincer, Polymer, 44, 2433 (2003)   DOI   ScienceOn
5 B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, 1990
6 P. Michele, P. Alessandro, and M. Claudio, Polymer, 46, 12065 (2005)   DOI   ScienceOn
7 J. T. Saavedra, J. L. Beceiro, S. Naya, and R. Artiaga, Polym. Degrad. Stabil., 93, 1233 (2008)
8 Z. Q. Tao, S. Y. Yang, J. S. Chen, and L. Fan, Eur. Polym. J., 43, 1470 (2007)   DOI   ScienceOn
9 W. J. Craft and R. M. Christensen, J. Comp. Mater., 15, 2 (1981)   DOI   ScienceOn
10 N. Bouillon, J. P. Pascault, and L. Tighzert, J. Appl. Polym. Sci., 38, 2103 (1989)   DOI
11 H. Lee and N. Kris, Handbook of Epoxy Resins, McGraw-Hill, New York, 1982
12 N. A. Isitman, M. Aykol, G. Ozkoc, G. Bayram, and C. Kaynak, Polym. Comp., in Press
13 M. Y. Jeong and D. G. Lee, J. Mater. Process. Tech., 63, 375 (1997)   DOI   ScienceOn
14 M. Run, H. Song, Y. Hao, X. Hu, and C. Yao, Polym. Comp., 30, 776 (2009)   DOI   ScienceOn
15 X. Y. Gong, Polym. Adv. Tech., 7, 141 (1996)   DOI
16 L. E. Nielsen, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 1974
17 A. Arikan, C. Kaynak, and T. Tincer, Polym. Comp., 23, 790 (2002)   DOI   ScienceOn
18 W. K. Goertzen and M. R. Kessler, J. Therm. Anal. Calor., 93, 87 (2008)   DOI   ScienceOn
19 Y. Sun, Z. Zhang, K. Moon, and C. P. Wong, J. Polym. Sci., 42, 3849 (2004)   DOI
20 W. K. Goertzen and M. R. Kessler, J. Appl. Polym. Sci., 109, 647 (2008)   DOI   ScienceOn
21 M. Battistella, M. Cascione, B. Fiedler, M.H.G. Wichmann, M. Quaresimin, and K. Schulte, Composites: Part A, 39, 1851 (2008)   DOI   ScienceOn