• Title/Summary/Keyword: modulus of thermal expansion

Search Result 173, Processing Time 0.023 seconds

Analysis of Thermal Expansion of Latex-Modified Concrete (라텍스개질 콘크리트의 열팽창 특성 분석)

  • Choi, Seong-Yong;Lee, Joo-Hyung;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Effect of Grain Size on the Thermomechanical Properties of $Al_2 TiO_5$ Ceramics

  • Kim, Ik-Jin;Kweon, Oh-Seong;Ko, Young-Shin;Constatin Zografou
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.246-250
    • /
    • 1996
  • The thermomechanical properties of materials from the system Al2O3-SiO2-TiO2(Tialite-Mullite) were investigated by correlating the thermal expansion anisotroypy, flexural strength and Young's modulus with grain size and atructural microcracking during cooling. Microcracking temperatures were determined by measuring the hysteresis of the thermal expansion anisotropy with dilatometry. Single phase Aluminium Titanate is a low strength material, while composites with more than 10 vol% mullite as second phase enhance the Young's modulus, thermal expansion coefficient and room temperature strength.

  • PDF

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

Thermal Durability of Al2TiO5-Mullite Composites and Its Correlation with Microstructure

  • Kim, Hyung-Chul;Lee, Dong-Jin;Kweon, Oh-Seong;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.532-536
    • /
    • 2005
  • Thermal shock resistance of structural ceramics is a property that is difficult to quantity, and as such is usually expressed in terms of a number of empirical resistance parameters. These are dependant on the conditions imposed, but one method that can be used is the examination of density, Young's modulus and thermal expansion retention after quenching. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between $1000^{\circ}C$ and $1300^{\circ}C$. In this study, an excellent thermal shock-resistant material based on $Al_2TiO_5-mullite$ composites of various compositions was fabricated by sintering reaction from the individual oxides and adjusting the composition of $Al_2O_3TiO_2/SiO_2$ ratios. The characterization of the damage induced by thermal shock was done by measuring the evolution of the Young's modulus using ultrasonic analysis, density and thermal expansion coefficients.

Synthesis of Epoxy Functional Siloxane and its Effect on Thermal Stress

  • Hyun, Dae-Sup;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.379-384
    • /
    • 2009
  • Epoxy resin based encapsulants are widely used in semiconductor packaging applications. Epoxy resin based encapsulants are often subject to crack or delamination during the reliability test due to the thermal stress caused by high modulus nature of epoxy resins. Epoxy functional siloxanes are often added into epoxy resin to reduce the modulus so that the thermal stress can be reduced. Epoxy functional siloxanes, additives for reduced modulus, were synthesized and added into the curable epoxy resins. The modulus and the coefficient of thermal expansion (CTE) were also measured to investigate the thermal stress and to see whether the epoxy functional siloxane adversely affects the CTE or not. As a result, around 26% to 72% of thermal stress reduction was observed with no adverse effect on CTE.

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.

Setting Shrinkage, Coefficient of Thermal Expansion, and Elastic Modulus of UP-MMA Based Polymer Concrete (UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수)

  • Yeon, Kyu-Seok;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • This study examines setting shrinkage, coefficient of thermal expansion, and elastic modulus of unsaturated polyester( UP)-methyl methacrylate(MMA) polymer concrete, which is generally used for repair of portland cement concrete pavement and manufacturing of precast products. In this study, a series of laboratory test were conducted with variables such as UP-MMA ratio, shrinkage reducing agent (SRA) content, and test temperature. The results showed that the setting shrinkage ranged from 29.2 to $82.6{\times}10^{-4}$, which was significantly affected by test temperature. Moreover, the findings revealed that the coefficient of thermal expansion, elastic modulus and ultimate strain of UP-MMA based polymer concrete ranged from 21.6 to $31.2{\times}10^{-6}/^{\circ}C$, 2.8 to $3.3{\times}10^4$ MPa, and 0.00381 to 0.00418, respectively. The results of this study will be used as important data for design and application of UP-MMA based polymer concrete.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

On thermal stability of plates with functionally graded coefficient of thermal expansion

  • Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.313-335
    • /
    • 2016
  • In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. Young's modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies according to a power law form through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory. The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion, aspect ratio, side-to-thickness ratio and gradient index will be investigated.