• Title/Summary/Keyword: modulus evolution

Search Result 53, Processing Time 0.022 seconds

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Elastic Properties Evaluation of Thin Films on Flexible Substrates with Consideration of Contact Morphology in Nanoindentation (나노압입시험에서의 접촉형상 보정을 통한 유연소자 박막의 탄성특성 평가)

  • Kim, Won Jun;Hwang, Gyeong-Seok;Kim, Ju-Young;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • The evolution of smartphones has led to numerous researches in the mechanical behavior of flexible devices. Due to the nano-size of the thin flexible film, nanoindentation is widely used to evaluate its mechanical behaviors, such as elastic modulus, and hardness. However, the commonly used Oliver-Pharr method is not suited for analyzing the indentation force-depth curves of hard films on soft substrates, as the effects of soft substrate is not considered theoretically. In this study, the elastic modulus of the thin film was evaluated with references to other reported models which include the substrate effect, and with calibration of the indentation depth for the pile-ups between the indenter and test surface. We fabricated test samples by deposition of amorphous metal film on polyimide and silicon wafers for verification of modified models.

THE GALACTIC OPEN CLUSTER NGC 6531 (M21)

  • PARK BYEONG-GON;SUNG HWANKYUNG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.149-155
    • /
    • 2001
  • UBV RI and H$\alpha$ photometry has been performed for the open cluster NGC 6531. A total of 56 bright main sequence (MS) members were selected from their positions in photometric diagrams. We also classified 7 pre-main sequence (PMS) stars and 6 PMS candidates with Ha: emission from H$\alpha$ photometry. We determined a reddening of < E(B - V) >= 0.29 $\pm$ 0.03 and a distance modulus of Vo - Mv = 10.5 for the cluster. From the comparison of our photometric results to theoretical evolution models, we derived a MS turnoff age of 7.5 Myr and a PMS age spread of $\~$4 Myr. The IMF slope $\Gamma$, calculated in the mass range of 0.45 $\le$ log m $\le$ 1.35 is a steep value of $\Gamma$ = -1.8 $\pm$ 0.6.

  • PDF

Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory

  • Jin, Peijian;Wang, Enyuan;Song, Dazhao
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.627-637
    • /
    • 2017
  • The high positive correlation between plastic strain of loaded coal-rock and AE (acoustic emission) characteristic parameter was studied and proved through AE experiment during coal-rock uniaxial compression process. The results show that plastic strain in the whole process of uniaxial compression can be gained through the experiment. Moreover, coal-rock loaded process can be divided into four phases through analyzing the change of the plastic strain curve : pressure consolidation phase, apparent linear elastic phase, accelerated deformation phase, rupture and development phase, which corresponds to conventional elastic-plastic change law of loaded coal-rock. The theoretical curve of damage constitutive model is in high agreement with the experimental curve. So the damage evolution law of coal rock damage can be indicated by both acoustic emission and plastic strain. The results have great academic and realistic significance for further study of both AE signal characteristics during loaded coal-rock damaged process and the forecasting of coal-rock dynamic disasters.

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

  • Vakhshouri, Behnam
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.581-597
    • /
    • 2020
  • Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and non-structural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer (속도 의존적인 폴리머 거동에 대한 구성적 모델)

  • Ho, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.216-222
    • /
    • 2013
  • Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].

Sejong Open cluster Survey (SOS). VII. A Photometric Study of the Young Open Cluster IC 1590

  • Kim, Seulgi;Sung, Hwangyung;Bessell, Michael S.;Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.50.3-50.3
    • /
    • 2020
  • We present deep UBVIc and Hα photometry for the young open cluster IC 1590 which is at the center of the HII region NGC 281. From Ha index, 39 Hα emission stars and 15 Hα emission candidates are selected. The reddening law toward IC 1590 is slightly abnormal (RV,cl = 3.6 ± 0.2). The distance modulus of IC 1590 obtained from the reddening-free (Q', QVλ) diagrams is 12.4 ± 0.1 mag (d = 3.02 ± 0.14 kpc), which is consistent with distance d = 2.91 ± 0.42 kpc from the parallax of Gaia DR2 catalogue within the error range. We also determined the age and mass function of IC 1590 using the stellar evolution models and PMS evolutionary tracks. The median age of PMS stars is 2.4 ± 2.2 Myr. The initial mass function (IMF) of IC 1590 is the Salpeter-type IMF with a slope of �� = -1.26 ± 0.14 for m > 1 M⊙ stars.

  • PDF

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

Performance Analysis of Dual-Layer Differential Precoding Technique Using 8-PSK Constellation (8-PSK 성운을 이용하는 이중계층 차분 선부호화 기법의 성능 분석)

  • Park, Noe-Yoon;Kim, Young-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.401-408
    • /
    • 2013
  • Dual-layer differential codebook using 8-PSK (phase shift keying) constellation as its codeword elements, is proposed for Long term evolution (LTE) and/or LTE-Advanced systems. Due to the temporal correlation of the adjacent channel matrices, the consecutive precoding matrices are likely to be similar. This approach quantize only the differential information of the channel instead of the whole channel subspace, which virtually increase the codebook size to realize more accurate quantization of the channel. Especially, the proposed codebook has the same properties of LTE release-8 codebook that is, constant modulus, complexity reduction, and nested property. The mobile station can be designed by using less expensive non-linear amplifier utilizing constant modulus property. Computer simulations show that the capacity of the proposed dual-layer codebook performs almost 1.2dB better than those of any other non-differential codebooks with the same amount of feedback information.