• Title/Summary/Keyword: modulus

Search Result 6,078, Processing Time 0.035 seconds

Effect of Fineness Modulus of Reactive Aggregate on Alkali Silica Reaction

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In this study, the effects of the fineness modulus of reactive aggregate on ASR expansion and ASR products have been investigated. The reactive aggregate used was metamorphic aggregate originated from Korea. ASR tests were conducted according to accelerated mortar bar test. The morphology and chemical composition of products formed in mortar bars, 5 years after the mortar bar test had been performed, were studied by scanning electron microscopy equipped with energy dispersive spectroscopy. Test results indicated that ASR expansion of mortar bars decrease in linear proportion to the fineness modulus of reactive aggregate. SEM images indicated that mortar bars showed reactive products formed in cement paste, within air voids and within cracks through particles except for the mortar bar with the fineness modulus of 3.25. The EDS analysis of the reactive products showed presence of silica, calcium and sodium, typical of ASR product composition.

Study for Dynamic Modulus Change Measurement of Permeable Asphalt Mixtures with Various Porosity using Non-Destructive Impact Wave (충격공진시험을 이용한 다양한 공극률을 가진 투수성 아스팔트 혼합물의 동탄성계수 변화 측정에 관한 연구)

  • Jang, Byung Kwan;Yang, Sung Lin;Mun, Sung Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2013
  • PURPOSES: This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions. METHODS: For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions. RESULTS : This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles. CONCLUSIONS : Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Determination of the mechanical properties of the coated layer in the sheet metal using load-displacement curve by nanoindentation technique (나노 인덴테이션의 하중-변위 곡선을 이용한 표면처리강판 코팅층의 기계적 특성 결정)

  • Ko Y. H.;Lee J. M.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading curve was used to determine the Young's modulus, hardness and strain hardening exponent. A new method is recently being developed for plasticity properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength and strain hardening are found to have significant effect on measured data. The load-displacement behavior of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films.

  • PDF

The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate (잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향)

  • 정용욱;윤용호;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

A Study on Estimation of deformation Modulus with Field Test Results (현장시험결과를 이용한 지반의 변형계수 추정에 관한 연구)

  • Chun, Byung-Sik;Lee, Young-Chul;Song, Chi-Yong;Seo, Deok-Dong;Lee, Soung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1245-1251
    • /
    • 2005
  • The deformation modulus is an important variable which can be used to predict settlement of structures, analyze horizontal directions of piles and design roads. Though to predict deformation modulus relationships using standard penentration test N-value and undrained shear strength were suggested , these relationships are not appropriate in domestic areas because these relationships are based on foreign areas. Therefore, in this study, with field test results, reasonable equations in domestic area are suggested to estimate deformation modulus.

  • PDF

Estimation of Modulus of Elasticity in High Strength Concrete (고강도 콘크리트의 탄성계수 추정)

  • Oh, Min-Ho;Kim, Tae-Wan;Choi, Jin-Woong;Cui, Jie;Kim, Hyung-Jun;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.413-414
    • /
    • 2010
  • Many researchs shows that modulus of elasticity in manual overestimates real modulus of elasticity of concrete as strength gets higher. In 2007 KCI Manual, formula in modulus of elasticity has revised that it should be demonstrated. In this study, modulus of elasticity in high strength was estimated by experiment and experimental value was compared with manual value.

  • PDF

Effect of Elastic Modulus Mismatch on the Contact Crack Initiation in Hard Ceramic Coating Layer

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1928-1937
    • /
    • 2003
  • Effect of elastic modulus mismatch on the contact crack initiation is investigated to find major parameters in designing desirable surface-coated system. Silicon nitride coated soft materials with various elastic modulus mismatch, E$\_$c//E$\_$s/=1.06∼356 are prepared for the analysis. Hertzian contact test is conducted for producing contact cracks and the acoustic emission detecting technique for measuring the critical load of crack initiation. The implication is that coating thickness and material strength are controllable parameters to prevent the initiation of contact cracks resulted from the elastic modulus mismatch in the hard ceramic coating layer on the soft materials.

Traring instability of crack based on J-integral (J-적분을 이용한 균열 찢어짐 불안정성에 관한 연구)

  • Lee, Hong-Seo;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.78-89
    • /
    • 1989
  • Applicability of tearing modulus based on J-integral proposed by Paris et al is investigated using compact tension specimens of strutural alloy steel (SCM4). Both general fracture test and instability fracture test are performed. The applied tearing modulus, ( $T_{j}$)app estimated from the real load vs. crack growth curve measured from experiments are compared with that estimated from the limit load vs. crack growth curve. The results are : (1) the $T_{j}$parameter could be applied to predict crack growth instability : (2) The use of ( $T_{j}$)app estimated from the load vs. crack growth curve, proposed in this study could be well predicted crack growth instability instead of that estimated form the limit load vs. crack growth curve.e.

  • PDF

Micro-hardness and Young's modulus of a thermo-mechanically processed biomedical titanium alloy

  • Mohammed, Mohsin Talib;Khan, Zahid A.;M., Geetha;Siddiquee, Arshad N.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.117-130
    • /
    • 2014
  • This paper presents a study on the influence of different thermo-mechanical processing (TMP) parameters on some required properties such as micro-hardness and Young's modulus of a novel near ${\beta}$ alloy Ti-20.6Nb-13.6Zr-0.5V (TNZV). The TMP scheme comprises of hot working above and below ${\beta}$ phase, solutionizing treatment above and below ${\beta}$ phase coupled with different cooling rates. Factorial design of experiment is used to systematically collect data for micro-hardness and Young's modulus. Validity of assumptions related to the collected data is checked through several diagnostic tests. The analysis of variance (ANOVA) is used to determine the significance of the main and interaction effects. Finally, optimization of the TMP process parameters is also done to achieve optimum values of the micro-hardness and Young's modulus.