• Title/Summary/Keyword: moduli of vector bundles over a curve

Search Result 1, Processing Time 0.016 seconds

LOCI OF RATIONAL CURVES OF SMALL DEGREE ON THE MODULI SPACE OF VECTOR BUNDLES

  • Choe, In-Song
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.377-386
    • /
    • 2011
  • For a smooth algebraic curve C of genus g $\geq$ 4, let $SU_C$(r, d) be the moduli space of semistable bundles of rank r $\geq$ 2 over C with fixed determinant of degree d. When (r,d) = 1, it is known that $SU_C$(r, d) is a smooth Fano variety of Picard number 1, whose rational curves passing through a general point have degree $\geq$ r with respect to the ampl generator of Pic($SU_C$(r, d)). In this paper, we study the locus swept out by the rational curves on $SU_C$(r, d) of degree < r. As a by-product, we present another proof of Torelli theorem on $SU_C$(r, d).