• Title/Summary/Keyword: modulation-transfer function

Search Result 293, Processing Time 0.032 seconds

Prediction Method for Moisture-release Surface Deformation of a Large Mirror in the Space Environment (우주환경에서 대형 반사경의 습기 방출에 의한 형상 변화 예측방법)

  • Song, In-Ung;Yang, Ho-Soon;Khim, Hagyong;Kim, Seong-Hui;Lee, Hoi-Yoon;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.166-172
    • /
    • 2018
  • In this paper, we propose a new method to predict a mirror's surface deformation due to the stress of moisture release by a coating in the environment of outer space. We measured the surface deformation of circular samples 50 mm in diameter and 1.03 mm thick, using an interferometer. The results were analyzed using Zernike fringe polynomials. The coating stress caused by moisture release was calculated to be 152.7 MPa. This value was applied to an analytic model of a 1.25 mm thickness sample mirror, confirming that the change of surface deformation could be predicted within the standard deviation of the measurement result ($78.9{\pm}5.9nm$). Using this methodology, we predicted the surface deformation of 600 mm hyperbolic mirror for the Compact Advanced Satellite, which will be launched in 2019. The result is only $2.005{\mu}m$ of focal shift, leading to 2.3% degradation of modulation transfer function (MTF) at the Nyquist frequency, which satisfies the requirement.

The MTF Measurement of the Conventional X-ray System by using the Computed Radiography (CR을 이용한 일반촬영장치의 MTF 측정)

  • Kim, Chang-Bok
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • The quality of image from the system that creates medical images by using X-ray depends on the various different reasons such as the X-ray generator, the subject and the image transmission medium. In other words, thereare various factors existing that can influence on the quality of image from the moment when the X-ray is generated and until the final image is created. Therefore, the operator who creates images at the clinical site should make continuous evaluation and observation from the final image. There are various methods of evaluating the medical images, but it is assumed that the MTF measurement method can be suitable for measuring actual or effective resolution. So in this study, the MTF measurement method by using X-ray film has been avoided and the MTF features according to the deterioration of the X-ray system have been measured by using the software (the program used Borland C++ builder software and LEAD tools software) that can measure the MTF of the digital medical images. As the result of this measurement, it has been found out through the MTF graph that the resolution and sharpness from the old x-ray generator with a many years of using and many numbers of times of using were deteriorated for the quality of image comparing to those from the new system. Also a simple and easy measurement method for the MTF from the digital medical images can be obtained in this study.

  • PDF

Changes in Spatial Resolution at Position of the Detector in Digital Mammography System (디지털 엑스선유방촬영장치에서 검출기 위치에 따른 공간분해능의 변화)

  • Kim, Hye-Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • X-ray mammography is the most effective method for the diagnosis of calcified lesions of various breast diseases. To reduce patient dose and to obtain optimal image required for diagnosis, the performance of the mammography system should be maintained continuously. Because the target (anode) angle of the X-ray tube is measured from the central X-ray, the effective angle can be slightly different in view of the position on the detector, which can result in degrading spatial resolution of the imaging within the field of view. In this study, we measured the MTF to examine spatial resolution for positions on the detector in the digital mammography system. For a tungsten wire of $50{\mu}m$ diameter, the highest spatial frequency was obtained. It meant that a wire diameter for measuring MTF through LSF should be small compared to the pixel size of the detector used in the mammography system. The spatial resolution showed slightly different performance according to positions on the detector. The center position gave the best spatial resolution and positions away from the center showed the degraded performance although the difference of the spatial resolution was small. The effective focal spot size of the full width at half maximum also showed similar result. It concluded that the slightly increase of the effective focal spot size gave the degradation of the spatial resolution for positions on the detector.

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.

FHD Flexible Endoscopy Design Using Wedge Prism (Wedge Prism을 이용한 FHD급 연성 내시경 광학계 설계)

  • Park, Sung-Woo;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • In this paper, a wedge prism application method was studied to design a full-high-definition (FHD)-class high-resolution flexible endoscope. In the case of the conventional flexible endoscope optical system, the F number is made large or a liquid lens is applied to obtain the same imaging performance in a wide depth of field. However, there is a problem in that the diameter of the optical system increases because an additional light guide and equipment are required. To solve this problem, two wedge prisms were applied to the flexible endoscope optical system to adjust the image distance for each object distance. First, two wedge prisms were symmetrically placed on the designed endoscopic optical system. An image distance satisfying the target imaging performance according to each objective distance was derived. Next, the wedge prism decenter value for controlling the image distance was derived. By combining these two data, a wedge prism decenter value that satisfied the target imaging performance at each object distance was applied in multi configurations. As a result of the optimal design applied with the wedge prism, a target imaging performance of more than 20% of the modulation transfer function for a resolution of 178 cycles/mm was satisfied in the entire depth of field of 100 mm-7 mm.

Slim Mobile Lens Design Using a Hybrid Refractive/Diffractive Lens (굴절/회절 하이브리드 렌즈 적용 슬림 모바일 렌즈 설계)

  • Park, Yong Chul;Joo, Ji Yong;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.281-289
    • /
    • 2020
  • This paper reports a slim mobile lens design using a hybrid refractive/diffractive optical element. Conventionally a wide field of view (FOV) camera-lens design adopts a retrofocus type having a negative (-) lens at the forefront, so that it improves in imaging performance over the wide FOV, but with the sacrifice of longer total track length (TTL). However, we chose a telephoto type as a baseline design layout having a positive (+) lens at the forefront, to achieving slimness, based on the specification analysis of 23 reported optical designs. Following preliminary optimization of a baseline design and aberration analysis based on Zernike-polynomial decomposition, we applied a hybrid refractive/diffractive element to effectively reduce the residual chromatic spherical aberration. The optimized optical design consists of 6 optical elements, including one hybrid element. It results in a very slim telephoto ratio of 1.7, having an f-number of 2.0, FOV of 90°, effective focal length of 2.23 mm, and TTL of 3.7 mm. Compared to a comparable conventional lens design with no hybrid elements, the hybrid design improved the value of the modulation transfer function (MTF) at a spatial frequency of 180 cycles/mm from 63% to 71-73% at zero field (0 F), and about 2-3% at 0.5, 0.7, and 0.9 fields. It was also found that a design with a hybrid lens with only two diffraction zones at the stop achieved the same performance improvement.

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Effects of Iterative Reconstruction Algorithm, Automatic Exposure Control on Image Quality, and Radiation Dose: Phantom Experiments with Coronary CT Angiography Protocols (반복적 재구성 알고리즘과 관전류 자동 노출 조정 기법의 CT 영상 화질과 선량에 미치는 영향: 관상동맥 CT 조영 영상 프로토콜 기반의 팬텀 실험)

  • Ha, Seongmin;Jung, Sunghee;Chang, Hyuk-Jae;Park, Eun-Ah;Shim, Hackjoon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, we investigated the effects of an iterative reconstruction algorithm and an automatic exposure control (AEC) technique on image quality and radiation dose through phantom experiments with coronary computed tomography (CT) angiography protocols. We scanned the AAPM CT performance phantom using 320 multi-detector-row CT. At the tube voltages of 80, 100, and 120 kVp, the scanning was repeated with two settings of the AEC technique, i.e., with the target standard deviations (SD) values of 33 (the higher tube current) and 44 (the lower tube current). The scanned projection data were reconstructed also in two ways, with the filtered back projection (FBP) and with the iterative reconstruction technique (AIDR-3D). The image quality was evaluated quantitatively with the noise standard deviation, modulation transfer function, and the contrast to noise ratio (CNR). More specifically, we analyzed the influences of selection of a tube voltage and a reconstruction algorithm on tube current modulation and consequently on radiation dose. Reduction of image noise by the iterative reconstruction algorithm compared with the FBP was revealed eminently, especially with the lower tube current protocols, i.e., it was decreased by 46% and 38%, when the AEC was established with the lower dose (the target SD=44) and the higher dose (the target SD=33), respectively. As a side effect of iterative reconstruction, the spatial resolution was decreased by a degree that could not mar the remarkable gains in terms of noise reduction. Consequently, if coronary CT angiogprahy is scanned and reconstructed using both the automatic exposure control and iterative reconstruction techniques, it is anticipated that, in comparison with a conventional acquisition method, image noise can be reduced significantly with slight decrease in spatial resolution, implying clinical advantages of radiation dose reduction, still being faithful to the ALARA principle.