• Title/Summary/Keyword: modular exponentiation

Search Result 64, Processing Time 0.021 seconds

A Novel Redundant Binary Montgomery Multiplier and Hardware Architecture (새로운 잉여 이진 Montgomery 곱셈기와 하드웨어 구조)

  • Lim Dae-Sung;Chang Nam-Su;Ji Sung-Yeon;Kim Sung-Kyoung;Lee Sang-Jin;Koo Bon-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2006
  • RSA cryptosystem is of great use in systems such as IC card, mobile system, WPKI, electronic cash, SET, SSL and so on. RSA is performed through modular exponentiation. It is well known that the Montgomery multiplier is efficient in general. The critical path delay of the Montgomery multiplier depends on an addition of three operands, the problem that is taken over carry-propagation makes big influence at an efficiency of Montgomery Multiplier. Recently, the use of the Carry Save Adder(CSA) which has no carry propagation has worked McIvor et al. proposed a couple of Montgomery multiplication for an ideal exponentiation, the one and the other are made of 3 steps and 2 steps of CSA respectively. The latter one is more efficient than the first one in terms of the time complexity. In this paper, for faster operation than the latter one we use binary signed-digit(SD) number system which has no carry-propagation. We propose a new redundant binary adder(RBA) that performs the addition between two binary SD numbers and apply to Montgomery multiplier. Instead of the binary SD addition rule using in existing RBAs, we propose a new addition rule. And, we construct and simulate to the proposed adder using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is faster by a minimum 12.46% in terms of the time complexity than McIvor's 2 method and existing RBAs.

Secure and Efficient Access Control Protocol in Digital Broadcasting System (디지털 방송에서 안전하고 효율적인 접근 제어 프로토콜)

  • Lee, Ji-Seon;Kim, Hyo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.32-43
    • /
    • 2010
  • IPTV is an emerging technology that combines both broadcasting and tele-communication technologies, and provides various multi-media contents to the service subscribers. In general, IPTV broadcasters transmit scrambled signals (multi-media contents) to the paying subscribers, and the users within the acknowledged network descramble the signals using the smart-card. That is, users are verified through communication between STB (Set-Top Box) and smart-card. In 2004, Jiang et al. proposed a secure protocol regarding the verification process. The method has been modified and enhanced by several following research works. However, all the methods that have been proposed so far required modular exponentiation operations which may raise the smart-card costs. In this paper, we propose a new efficient mutual authentication and session-key establishment protocol using only hash functions and exclusive-or operations, and show that the proposed protocol is still secure under various security attacks.

Secure RSA with CRT Protected Against Fault Attacks without using Checking Procedure (비교연산을 사용하지 않는 오류주입 공격에 안전한 CRT 기반의 RSA)

  • Kim, Sung-Kyoung;Kim, Tae-Hyun;Han, Dong-Guk;Park, Young-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.17-25
    • /
    • 2008
  • Because Chinese Remainder Theorem based RSA (RSA CRT) offers a faster version of modular exponentiation than ordinary repeated squaring, it is promoting with standard. Unfortunately there are major security issues associated with RSA CRT, since Bellcore announced a fault-based cryptanalysis against RSA CRT in 1996. In 1997, Shamir developed a countermeasure using error free immune checking procedure. And soon it became known that the this checking procedure can not effect as the countermeasures. Recently Yen proposed two hardware fault immune protocols for RSA CRT, and this two protocols do not assume the existence of checking procedure. However, in FDTC 2006, the method of attack against the Yen's two protocols was introduced. In this paper, the main purpose is to present a countermeasure against the method of attack from FDTC 2006 for CRT-RSA. The proposed countermeasure use a characteristic bit operation and dose not consider an additional operation.

A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA (RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.71-76
    • /
    • 2014
  • There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.