• Title/Summary/Keyword: modified stress-strain model

Search Result 170, Processing Time 0.021 seconds

Full-range plasticity of novel high-performance low-cost stainless steel QN1803

  • Zhou, Yiyi;Chouery, Kim Eng;Xie, Jiang-Yue;Shu, Zhan;Jia, Liang-Jiu
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.739-752
    • /
    • 2020
  • This paper aims to investigate cyclic plasticity of a new type of high-performance austenitic stainless steel with both high strength and high ductility. The new stainless steel termed as QN1803 has high nitrogen and low nickel, which leads to reduction of cost ranging from 15% to 20%. Another virtue of the new material is its high initial yield strength and tensile strength. Its initial yield strength can be 40% to 50% higher than conventional stainless steel S30408. Elongation of QN1803 can also achieve approximately 50%, which is equivalent to the conventional one. QN1803 also has a corrosion resistance as good as that of S30408. In this paper, both experimental and numerical studies on the new material were conducted. Full-range true stress-true strain relationships under both monotonic and cyclic loading were obtained. A cyclic plasticity model based on the Chaboche model was developed, where a memory surface was newly added and the isotropic hardening rule was modified. A user-defined material subroutine was written, and the proposed cyclic plasticity model can well evaluate full-range hysteretic properties of the material under various loading histories.

A Comparison Study on the Two Dimensional Consolidation Analysis Methods (2 차원(次元) 압밀해석법(壓密解析法)의 비교연구(比較研究))

  • Park, Byong Kee;Chung, Jin Sup;Park, Hae Kuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.39-47
    • /
    • 1985
  • In this paper, a FEM analysis model was developed to solve the consolidation phenomena of embankment on the soft foundation. The developed FEM model was based on the Biot's consolidation equation which was coupled with one of three stress-strain constitutive relationships. In order to check the validity of the newly developed FEM model, the program input data were used by a test embankment which had been already constructed at Cubzac-les-ponts in France by Magnan et al. The FEM results compared to the experimental and analytical results which were obtained by the Magnan's group at Cubzac-les-ponts. The results compared showed that the consolidation phenomena were well explained by the author's FEM model which results were more accurate than the others. As for the pore water pressure, Christian-Boehmer's method used in this paper was considered preferable to Sandhu-Wilson's used by Magnan.

  • PDF

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

Estimation of Non-linear Strength and Stiffness for Silty Sands (실트질 모래지반의 비선형 강도 및 강성도 추정법)

  • Lee Kyung-Sook;Kim Hyun-Ju;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • In general typically granular soils contain a certain amount of fines. It is also widely recognized that foundation soils under working loads show highly non-linear behavior from very early stages of loading. In the present study, a series of laboratory tests with sands of different silt contents are conducted and methods to assess strength and stiffiness characteristics are proposed. Modified hyperbolic stress-strain model is used to analyze non-linearity of silty sands in terms of non-linear Degradation parameters f and g as a function of silt contents and Relative density Dr. Stress-strain curves were obtained from a series of triaxial tests on sands containing different amounts of silt. Initial shear modulus, which is used to normalize Degradation modulus of silty sands, was determined from resonant column test results. From the laboratory test results, it was observed that, as the Relative density increases, values of f decrease and those of g increase. In addition, it was found that values of f and g increase and decrease respectively as a Skeleton void ratio $(e_{sk})$ increases.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.