• Title/Summary/Keyword: modified similitude law

Search Result 9, Processing Time 0.018 seconds

Modified Similitude Law for Pseudodynamic Test on Small-scale Steel Models (철골 축소모헝의 유사동적실험을 위한 수정된 상사법칙)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • Although there are several experimental techniques to evaluate the seismic behavior and performance of civil structures, small-scale models in mast of physical tests, instead of prototypes or large-scale models, would be used due to a limitation on capacities of testing equipments. However, the inelastic seismic response prediction of small-scale models has some discrepancies inherently because the similitude law is generally derived in the elastic range. Thus, a special attention is required to regard the seismic behavior of small-scale models as one of prototypes. In this paper, differences between prototypes and small-scale models pseudodynamically tested on steel column specimens are investigated and an alternative to minimize them is suggested. In general, small-scale models could have the distorted stiffness induced from some experimental errors on test setup, steel fabrication and so on. Therefore, a modified similitude law considering both a scale factor for length and a stiffness ratio of small-scale model to prototype is proposed. Using the modified similitude law to compensate experimental errors, the pseudodynamic test results from modified small-scale model are much improved as compared with the results of prototype. According to the pseudodynamic test results of small-scale steel models, it can be concluded that the modified similitude law proposed could be effective in simulating the seismic response of prototype structures.

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

Development of the similitude law considering the intensity-dependent variation of natural frequency of pile foundation system (말뚝 기초 고유진동수의 가속도 크기 의존성을 고려한 상사법칙 개발)

  • Choi, Jung-In;Yoo, Min-Teak;Kim, Sung-Yul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.905-912
    • /
    • 2009
  • 1-g shaking table test is conducted to evaluate the dynamic behavior of a soil-structure system under seismic loading condition. A consistent similitude law between the model and prototype is needed to predict the behavior of the prototype structure, quantitatively. The natural frequency of geomaterial decreases with the increase of shaking intensity because of the non-linear property of the geomaterial. This phenomenon affects the applicability of similitude laws in 1-g shaking table tests. In this study, a simple method is suggested to determine the frequency of the input motions in 1-g tests in order to enhance the applicability of similitude laws. Modified input frequency is calculated using the frequency ratio with consideration of the variation of the natural frequency according to the intensity of input ground acceleration. To verify the applicability of the suggested method, a series of 1-g shaking table tests were performed for three different sizes of model piles having an overburden mass on their heads by varying the acceleration and the frequency of input motion. The acceleration amplification ratio on the overburden mass, the lateral displacement at the pile head and the maximum bending moment along the pile depth were measured. The projected behaviors of the virtual prototype based on the measured values of the model tests, where the input frequencies were calculated by the new method, showed good consistency, verifying the applicability of the suggested method.

  • PDF

Similitude Law and Scale Factor for Blasting Demolition Test on RC Scale Models (철근콘크리트 축소모형의 발파해체실험을 위한 상사법칙 및 축소율)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • When doing a blasting demolition on RC structures made of scale models, scale model members considering both a proper scale factor and mechanical characteristics of materials have to be similar to prototype RC members to analyze the collapse behavior of RC structures. In this study. a similitude law considering the density of prototype materials is calculated. Both mix of concrete and arrangement of reinforcement have been described referring to Concrete Standard Specification as well as Design Standard of Concrete Structure. The scale factor on scaled concrete models considering maximum size of coarse aggregate is about one-fifth of a cross section of prototype concrete members. A scale factor on staled steel bar models is about one-fifth of a nominal diameter of prototype steel bar. According to the mechanical test results of scale models, it can be concluded that the modified similitude law may be similar to compressive strength of prototype concrete and yield strength of prototype steel bar.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.