• Title/Summary/Keyword: modified polypropylene

Search Result 141, Processing Time 0.021 seconds

Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene (황마섬유 및 황마-폴리프로필렌 복합체의 특성에 미치는 플라즈마 처리영향)

  • Huh, Yang Il;Bismark, Mensah;Kim, Sungjin;Lee, Hong Ki;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.310-317
    • /
    • 2012
  • A jute fiber surface was modified with argon gas in a cylinder type RF plasma generator to enhance the interfacial bond strength and to optimize the plasma treatment condition. The plasma power, gas pressure, and treat time were varied to figure out any effect of those parameters on the morphology and mechanical strength of jute fibers, and the interfacial bond strength for a model composite with polypropylene resin. As the severity of plasma treatment was increased, the surface of jute fibers became rougher. Gas pressure was less effective in roughening of the surface compared with those of treat time and plasma power. Approximately 25% drop in tensile strength of jute fibers was observed for the parameters of treat time and plasma power, while little deterioration was found for gas pressure, with increasing the severity. Based on the interfacial shear strength (IFSS), the optimum plasma treatment condition was determined to be treat time of 30 s, plasma power of 40 W, and gas pressure of 30 mTorr.

A Study on the Dispersion Characteristics of PP/MMT Composites (PP/MMT 복합체의 분산특성에 관한 연구)

  • 김규남;김형수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.374-381
    • /
    • 2000
  • Composites of polypropylene (PP) and organically modified montmorillonite (org-MMT) were prepared by melt mixing in an intensive mixer. Three grades of PP's having different melt viscosities were employed to investigate the dispersion characteristics of the composites with various org-MMT's. Depending on the matrix viscosity and nature of the interlayer in org-MMT significant variations of the phase structure were found. Under the constant mixing condition and matrix viscosity, intercalation of PP chains into the interlayer of org-MMT was possible when initial interlayer distance and packing density were maintained in the optimum range; by which the loss in entropy associated with the confinement of polymer chains was compensated. The state of org-MMT particle dispersion was improved by increasing the matrix viscosity only in the case that dispersed phase is suitable for intercalation process thermodynamically, otherwise little variation was occurred regardless of the matrix viscosity. Due to the lack of specific interaction between PP and erg-MMT considered here, although the intercalation was possible for an appropriate org-MMT, the composites revealed unstable phase structure upon increasing the mixing time, which was characterized by agglomeration of the org-MMT domains.

  • PDF

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

Formability for AA5182 sheet and AA5182/PP/AA5182 sandwich sheet (AA5182판재와 AA5182/PP/AA5182 샌드위치 판재의 성형성 평가)

  • 김대용;김기주;정관수;신광선;유동진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • For automotive applications, a sandwich sheet which was made of a 5182 aluminum alloy (AA5182) sheet and a polypropylene (PP) sheet, AA5182/PP/AA5182, has been developed. In order to evaluate its formability, the forming limit diagrams (FLD) of the 5182 aluminum alloy sheet with 0.2mm thickness and the sandwich sheet with 1.2mm thickness have been obtained based on the modified Marciniak-Kuczynski (M-K) theory. To account for the anisotropy of the sheet, Hill's 1948 yield function has been applied. The FLD of the sandwich sheet was predicted to be better than that of the AA5182 sheet, which was well confirmed by experiments.

  • PDF

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

Impact Characteristics and Morphology of Nylon 6/Polypropylene Blends (Nylon 6/Polypropylene 블렌드의 충격특성 및 모폴로지)

  • Kim, Jong-Guk;Yun, Ju-Ho;Go, Jae-Song;Choe, Hyeong-Gi;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Melt blends of maleic anhydride grafted polypropylerle(PP-g-MA) and Nylon 6 were prepared to study the influence of chemical reaction between the two polymer components. By adding the MA grafted polystyrene pold (ethylene/butadiene) and polystyrene[SEBS-g-MA] as the compatible modifiers to reinforce the impact resistance, the Izod impact strength, high rate impact strength and morphology were studied. The notched Izod impact strength increased with the content of PP-g-MA and SEBS- g-MA. The energy of high rate impact strength increased as the thickness of specimen increased, while, it increased as the specimen displacement decreased. In the morphology observed by SEM, finally, we confirmed the improvement of the compatibilization and interfacial adhesion with the content of SEBS-g-MA. The continuous phase of PP-g-MA was the main cause of the modified properties.

Deinking process of Old Newsprint(ONP) by using Modified Cellulase with synthesized copolymer (기능성 고분자를 이용한 수식 셀룰라아제의 폐 신문용지 탈묵에 관한 연구)

  • Kim, Honghyun;Kwak, Tae-Heon;Park, Jinwon;Park, Kwinam
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2004
  • Cellulase was modified with copolymer with polyethylene(PE)/polypropylene(PP) oxide and maleic anhydride(MA) by maleylation reaction, and modified cellulase was applied to the reprocessing of old newsprint (ONP). Cellulase of modified cellulase enhanced the detachment of ink particles by fibrillation of fiber. The copolymer, which acted as the surfactant formed bubbles and removed the ink particles in the floatation process. Modified cellulase showed the same deinking ability without excess dosage compared with the conventional method. And, it improved the physical properties including tensile strength, brightness, and whiteness compared with the conventional deinking process. The bond between the ink and fiber got stronger as the storage time increased, and it became very difficult to remove the ink particle. But, modified cellulase increased the deinking ability by 41% compared with the conventional process at the experiment of the ONP for 1 year storage time. It removed the yellowing and increased the whiteness and brightness as well as tensile strength and internal bond strength.

  • PDF

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

Efficiency of Retarding Reflection Crack in Reinforced-and-Modified Asphalt Pavement Overlay (개질재.보강재를 이용한 덧씌우기 아스팔트 포장의 반사균열 지연 효과)

  • Kim, Kwang-Woo;Doh, Young-Soo;Lim, Sung-Bin;Rhee, Suk-Keun;Eum, Joo-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • This study was performed to evaluate performance of polymer-modified asphalt mixtures and specially designed reinforcement techniques against reflection cracking of the asphalt pavement overlay. Selected polymers were used for asphalt modification and polyester fiber, a polypropylene film (vinyl) and a grid were used for mixture reinforcement. Using the asphalt mixture with optimum asphalt content, a slab was made and cut into two pieces of specimen. A layer of grid or vinyl was placed at the bottom of specimen to strengthen the pavement layer against crack. A repeated loading was applied to the asphalt mixture specimen which is Placed on a cement concrete with a pseudo-crack. Crack propagation under repeated loading was monitored and effectiveness of the devised crack retarding techniques was evaluated. From the test results. a significant retardation of mode I crack progress was monitored from some of the modified and reinforced asphalt mixtures.

  • PDF

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.