• Title/Summary/Keyword: modified method of feasible direction(MMFD)

Search Result 6, Processing Time 0.024 seconds

The Optimum Design of Airfoil Shape with Parallel Computation (병렬연산을 이용한 익형의 최적 설계)

  • Jo,Jang-Geun;Park,Won-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aerodynamic optimization method for airfoil design was described in this paper. The Navier-Stokes equations were solved to consider the viscous flow information around an airfoil. The Modified Method of Feasible Direction(MMFD) was used for sensitivity analysis and the polynomial interpolation was used for distance calculation of the minimization. The Message Passing Interface(MPI) library of parallel computation was adopted to reduce the computation time of flow solver by decomposing the entire computational domain into 8 sub-domains and one-to-one allocating 8 processors to 8 sub-domains. The parallel computation was also used to compute the sensitivity analysis by allocating each search direction to each processor. The present optimization reduced the drag of airfoil while the lift is maintained at the tolerable design value.

Optimization Design of Cascade with Rotor-Stator Interaction Effects (정익과 동익의 상호작용을 고려한 익렬의 공력 최적 설계)

  • Cho, J, K.;Jung, Y. R.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.293-299
    • /
    • 2001
  • Since the previous cut-and-try design algorithm require much cost and time, it has recently been concerned the automatic design technique using the CFD and optimum design algorithm. In this study, the Navier-Stokes equations is solved to consider the more detail viscous flow informations of cascade interaction and O-H multiblock grid system is generated to impose an accurate boundary condition. The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. To validate present procedure, the time averaged aerodynamic loads are compared with experiment and good agreement obtained. Once the N-S equations have been solved, the computed aerodynamic loads may be used to computed the sensitivities of the aerodynamic objective function. The Modified Method of feasible Direction(MMFD) is usef to compute the

  • PDF

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.

Shape Design Optimization of Ship Structures Considering Thermal Deformation and Target Shape (열 변형과 목적형상을 고려한 선체구조의 형상 최적설계)

  • Park, Sung-Ho;Choi, Jae-Yeon;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • In this paper, we develop a shape design optimization method for thermo-elastoplasticity problems that is applicable to the welding or thermal deformation problems of ship structures. Shell elements and a programming language APDL in a commercial finite element analysis code, ANSYS, are employed in the shape optimization. The point of developed method is to determine the design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of surfaces are selected as the design parameters. The modified method of feasible direction (MMFD) and finite difference sensitivity are used for the optimization algorithm. Two numerical examples demonstrate that the developed shape design method is applicable to existing hull structures and effective for the structural design of ships.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.