• Title/Summary/Keyword: modified atmosphere storage

Search Result 186, Processing Time 0.033 seconds

Techniques to Extend the Storage Period of Cheese - A Review of the Current Status and Future Prospects (치즈의 저장 기간 증가에 이용되는 다양한 기술에 관한 현황과 전망: 총설)

  • Chon, Jung-Whan;Kim, Tae-Jin;Seo, Kun-Ho;Youn, Hye-Young;Kim, Hyeon-Jin;Her, Jekang;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The safety and storage periods of various foods, including dairy products, can be affected by a variety of internal and external factors. Therefore, all foods have a risk of deterioration after storage for a certain period of time for many different reasons. Among dairy products, cheese is enriched in necessary nutrients; however, it can also easily undergo physical, chemical, and biochemical changes under various conditions. Therefore, the storage period of cheese is an important issue. If various factors that can affect the safety and storage period of cheese can be controlled, the safety of cheese can be preserved and its storage period extended. This review of the literature published on the issue summarizes various state-of-the-art technologies currently used to extend the storage period of cheese without affecting its quality. This basic data will inform future research concerning the storage period of various cheeses.

Perforation Adjustment of Unit Package for 'Fuji' Apples during Short-term Cold Storage and Export Simulation ('후지' 사과의 단기 저온저장 및 모의수출 과정에서 소포장의 천공도 조절 효과)

  • Kim, Su-Jeong;Park, Youn-Moon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.184-192
    • /
    • 2014
  • Various types of unit packaging methods were applied for 'Fuji' apples during short-term cold storage and export simulation. Gas tightness of the package was controlled stepwise in the successive two-year experiments using different perforation treatments (none, punch hole, or pinhole) and sealing methods (tie v s. heat seal). Risk of tight packaging and effectiveness of macroperforation on weight loss and quality maintenance were analyzed as related to changes in gas concentration inside the packages. Immediately after harvest, each 5 apple units were packaged in $40{\mu}m$ polypropylene (PP) film bags, stored 4 weeks at $0^{\circ}C$, and then put on the shelf for one week at ambient temperature in the preliminary experiment, In the main experiment, export process was imposed after storage simulating 2 week refrigerated container shipment at $0^{\circ}C$ plus one week local marketing at ambient temperature. Non-perforated film packaging with relatively high gas tightness induced flesh browning caused by carbon dioxide accumulation regardless of the sealing methods. Among perforated film packaging, in contrast, atmospheric modification was partly established only in the pinhole treatment and flesh browning symptom was not observed in all the treatments. Even the punch hole perforated film packaging without gas tightness effectively reduced the weight loss, whereas had slight benefits for quality maintenance. Reduced perforation using pinhole treatment seemed to improve sensory texture, while effects on physicochemical quality were insignificant. Overall results suggest the need of more minute perforation treatments on the packaging film to ensure modified atmosphere effects on quality maintenance.

Combined Foliar Spray of Boron, Calcium, and Silicon can Influence Quality and Shelf Life of Cherry Tomato in Modified Atmosphere Packaging (붕소, 칼슘, 규소의 복합 엽면시비가 방울토마토의 품질과 MAP 조건에서 저장성에 미치는 영향)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Han, Su Jeong;Kim, Ju Young;Choi, In-Lee;Yoon, Jae Su;Yoon, Hyuk Sung;Park, Jong-Man;Kim, Il-Seop;Choi, Ki-Young;Kang, Ho- Min
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.310-316
    • /
    • 2017
  • This study was analyzed the effects of boron (B), calcium (Ca), silicon (Si) on quality and shelf life of 'Unicorn' cherry tomato at the light red maturity-stage. The storage conditions were modified atmosphere packaging (MAP) by oxygen transmission rate (OTR) packaging film at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Respiration and ethylene production were the lowest in B + Ca + Si -treated tomato fruits. The lowest fresh weight loss and the longest shelf life resulted from the B + Ca + Si treatment. And the firmness was enhanced by B + Ca + Si treatment at harvest time, and it was retained after storage at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Significantly lower soluble solids, lycopene, and color development were found at B + Ca + Si-treated tomato fruits compared with control after storage. Moreover, the highest titratable acidity and vitamin C content were observed in B + Ca + Si-treated tomato fruits after storage. From the above results, it was concluded that B + Ca + Si combined treatment can delay the maturity of cherry tomato after harvesting, and retained the firmness and prolong the shelf life.

Effects of MA Storage with NaCl for Red Chili Pepper and Red Bell Pepper Fruits (NaCl을 이용한 홍고추 및 홍피망의 MA저장 효과)

  • 정천순;이귀현
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The effects of modified atmosphere (MA) storage far fresh red pepper and red bell pepper fruits were investigated with storing in high and few density polyethylene films (HDPE, LDPE) with various NaCl contents(0 g, 15 g, 20 g, 25 g). During the storage of pepper fruits, the weight loss, color change, mold emergence, and firmness were evaluated. The weight loss of pepper fruits packaged in HDPE and LDPE without NaCl was 3∼5%, even though it was 6∼19% in pepper fruits packaged with NaCl. The lutes of mold emergence of red pepper and red bell pepper fruits were lowered to 20∼45% as stored in HDPE and LDPE with NaCl but those of fruits stored in films without NaCl were high as 55∼65%. The color and firmness of pepper fruits were not much changed in comparison with those of non-packaged fruits as stored in HDPE and LDPE with or without NaCl.

Effect of Packaging and Loading Conditions on the Quality of Late Autumn Chinese Cabbage during Cold Storage (포장 및 적입 방법이 늦가을배추의 저온저장 중 품질에 미치는 영향)

  • 김병삼;남궁배;김민정
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • To extend the freshness of late autumn Chinese cabbage, the packaging and loading effects on the quality were investigated during cold storage. Judging from overall quality during storage period, late autumn Chinese cabbage could be stored by 3 months at 0$\^{C}$ cold storage. However, late autumn Chinese cabbage was not acceptable for long-term storage because of its marketability and the storage cost. Among 3 packaging methods(PP-net, carton and plastic container) for stored Chinese cabbage, plastic container and carton were more effective than PP-net packaging for the freshness prolongation. Gas composition in the plastic bags during storage was not significantly different among packaging conditions and O$_2$ and CO$_2$ concentrations were 13∼18% and 0.75∼7.48%, respectively, MAP with plastic film was effective for the quality retention because of low oxygen composition and high humidity condition in the bags.

  • PDF

Effect of PE film thickness on MA storage or kiwifruit(Actinidia chinensis Planch.) during storage (PE 필름 두께에 따른 한국산 양다래(Actinidia chinensis Planch.)의 MA 저장에 관한 연구)

  • Lee, Se-Eun;Kim, Dong-Man;Kim, Kil-Whan
    • Applied Biological Chemistry
    • /
    • v.35 no.2
    • /
    • pp.126-131
    • /
    • 1992
  • For the development of kiwifruit storage method applicable to farm level, several quality indicator of kiwifruit(Actinidia chinensis Planch.) were measured during storage at modified atmosphere(MA) conditions(0.04, 0.06, 0.08 and 0.10 mm PE Film). The results obtained from the experiment were as follows. The highest firmness was marked by the kiwifruit kept in 0.06 mm thick film bag and the lowest weight loss was shown in 0.10 mm thick film bag. The largest production of respiratory rate was occured after storage for 30 days. The concentration of $O_2\;and\;CO_2$ in 0.06 mm thick film bag was 2.6% and 3.2% after storage for 60 days, respectively. It could be concluded that the optimum PE film thickness for MA storage of kiwifruit was 0.06 mm.

  • PDF

Effect of Pallet-unit MAP Treatment on Freshness Extension of Spring Chinese Cabbage (Pallet-unit MAP처리에 따른 봄배추의 선도 연장 효과)

  • Lee, Young-Joo;Lee, Hye-Ok;Kim, Ji-Young;Kim, Byeong-Sam
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.6
    • /
    • pp.634-642
    • /
    • 2016
  • Chinese cabbage is produced and consumed as a main material for kimchi and as a staple vegetable in Korea throughout the year. However, due to environmental changes unbalance between supply and demand is repeated annually, requiring development of long-term storage technologies. Chinese cabbages, were harvested, put in plastic boxes, and precooled at $2^{\circ}C$ for 24 hours using forced air precooler. After precooling, Chinese cabbages were MAP-treated with 0.02 mm HDPE film and functional film and stored at low temperature ($1{\pm}0.5^{\circ}C$). The weight-loss rates after 9-weeks of storage were 8.47% in the control group, 4.07% in the HDPE film-treated group, and 3.07% in the functional film-treated group, respectively, suppressing weight loss. Trimming loss rate after 6-weeks of storage was 6.86% in the functional film MAP-treated group and lower than 7.50% in the control group. In the sensory test with 7 points as the limit of commodity, the control group lost it after 6-weeks of storage while the MAP-treated groups retained over 7 points. The functional film MAP-treated group showed over 6 points for processing as kimchi until 9-weeks of storage, proving that Pallet-type MAP storage is effective for extending storage life of spring Chinese cabbage.

The Effect of a Chitosan/TiO2-Nanoparticle/Rosmarinic Acid-Based Nanocomposite Coating on the Preservation of Refrigerated Rainbow Trout Fillets (Oncorhynchus mykiss)

  • Pinar Kizilkaya;Mukerrem Kaya
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1170-1182
    • /
    • 2023
  • The aim of this study was to determine the effect of chitosan (CH)-based nanocomposite coating applications [chitosan+TiO2 (CHT) and chitosan+TiO2+rosmarinic acid (CHTRA)] on changes in quality attributes of rainbow trout fillets during cold storage (4℃). Fish fillets were randomly divided into four groups and subjected to treatments (CH, CHT, CHTRA, and control). After treatments, the groups were packaged under a modified atmosphere (40% CO2+30% O2+30% N2) and stored at 4℃ for 18 days. During cold storage, the samples were subjected to physico-chemical and microbiological analyses. During storage, CH, CHT, and CHTRA treatments showed lower aerobic mesophilic and psychrotrophic bacteria counts than the control. However, the differences between coating treatments were not significant. The highest mean pH value was determined in the control group. As the storage time increased, the thiobarbituric acid reactive substances value increased. At the end of the storage period, no significant differences were observed between the treatments, including in the control group. The total volatile basic nitrogen (TVB-N) level in the control group was above 25 mg/100 g on day 15 of storage. However, the TVB-N level in the treatment groups was below 20 mg/100 g on day 18. It was also determined that coating application×storage period interaction had a significant effect on all color parameters (p<0.01). At the end of storage, the highest CIE L* was observed in CHTRA treatment. However, the value of this treatment did not differ from that of the CH treatment.

Effect of Packaging Conditions on the Fruit Quality of Chinese Quince

  • An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.683-687
    • /
    • 2006
  • The respiration rate of Chinese quince was measured at 0, 5, 10, and $20^{\circ}C$ to determine its tolerable range of storage temperatures. Based on the measured respiration rates, plastic films covering a wide range of gas permeabilities were used for packaging and storing individual Chinese quince at 0 and $10^{\circ}C$. Chinese quince can be categorized as low respiration fruit. Higher respiratory quotients were observed at higher temperature suggesting that the tolerable temperature range for storage is $0-10^{\circ}C$. Packages containing Chinese quince wrapped in highly gas-permeable polyolefin film PD 941 attained, with progressive decreases in volume, 9.5-10.2% $O_2$ and 1.3-1.8% $CO_2$ at $0^{\circ}C$, 8.1% $O_2$ and 2.4% $CO_2$ at $10^{\circ}C$. At these levels, PD 941 could preserve the fruit at acceptable quality levels for 152 and 50 days at 0 and $10^{\circ}C$, respectively. Less gas-permeable packages built up high $CO_2$ concentrations (above 15.8%) and low $O_2$ concentrations (less than 1.8%) causing free volume expansion and eventual dark discoloration of the fruit. The storage life realized by packaging with polyolefin film PD 941 could facilitate the availability of Chinese quinces in winter and spring for medicinal or ornamental purposes in the fresh state.

Investigation on the Condition of the Removal of Astringency during MA Storage of Astringent Persimmon Variety (저장처리조건에 따른 떫은 감의 단감화)

  • 성종환
    • Food Science and Preservation
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • This experiment was carried out to select the optimum thickness of polyethylene film for the nonastringency of astringent persimmon fruits during modified atmosphere(MA) storage of Cheongdo Bansi kept at 0$^{\circ}C$. The experimental plots were divided into 5 plots by film thickness(0.08, 0.10, 0.12, 0.14 and 0.16mm). The experimental items were the changes in concentration of CO2 and O2 in film brig, soluble tannin contents, loss of weight firmness and external appearance of fruits. The nonastringency of persimmon fruits can be achieved all groups excepting the 0.08mm film during MA storage. The sweet persimmon in film bag of 0.10 and 0.12mm maintained a high quality and firmness, but following the deastringency the fruits in 0.14 and 0.16mm developed off-color. The increasing of carbon dioxide level and decreasing of oxygen level in film bag created anaerobic condition at earth stage, and then it kept a constant level during stooge. According to film thickness the obvious difference in the change of soluble tannin contents external appearance and firmness were observed. It could be concluded that the optimum thickness of film for the desirable nonastringency on Cheongdo Bansi was 0.10mm.

  • PDF