• 제목/요약/키워드: modified asphalt pavement

검색결과 79건 처리시간 0.032초

일반국도 현장조사 모니터링을 통한 장수명 아스팔트 덧씌우기 포장의 공용성 분석 (Performance Evaluation of Long-Life Asphalt Concrete Overlays Based on Field Survey Monitoring in National Highways)

  • 백종은;임재규;권수안;권병윤
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.69-76
    • /
    • 2015
  • PURPOSES : Performance evaluation of four types of asphalt concrete overlays for deteriorated national highways. METHODS : Pavement distress surveys for crack rate and rut depth have been conducted annually using an automated pavement survey vehicle since 2007. Linear and non-linear performance prediction models of the asphalt concrete overlays were developed for 43 sections. The service life of the asphalt overlays was defined as the number of years after which a crack rate of 30% or rut depth of 15mm is observed. RESULTS : The service life of the asphalt overlays was estimated as 17.4 years on an average. In 90.7% of the sections, the service life of the overlays was 15 years or more which is 1.5 times the life of conventional asphalt concrete overlays used in national highways. The performance of the overlays was dependent on the type of asphalt mixture, traffic volume levels, and environmental conditions. CONCLUSIONS : The usage of stone mastic asphalt (SMA) and polymer-modified asphalt (PMA) for the overlays provided good resistance to cracking and rutting development. It is recommended that appropriate asphalt concrete overlays must be applied depending on the type of existing pavement distress.

개질재.보강재를 이용한 덧씌우기 아스팔트 포장의 반사균열 지연 효과 (Efficiency of Retarding Reflection Crack in Reinforced-and-Modified Asphalt Pavement Overlay)

  • 김광우;도영수;임성빈;이석근;엄주용
    • 한국도로학회논문집
    • /
    • 제1권1호
    • /
    • pp.85-96
    • /
    • 1999
  • 본 연구는 아스팔트 콘크리트 덧씌우기에서 야기되는 반사균열에 대한 저항성을 향상시키기 위하여 개질재 및 보강재를 사용하여 제조한 혼합물의 성능을 평가하기 위하여 수행하였다. 아스팔트 개질재로는 LDPE와 SBS 및 카본블랙을 이용하였고. 보강재로는 합성섬유(PF), 비닐(PV), 그리드(GG)를 이용하였다. 배합설계를 통해 얻은 최적아스팔트 함량으로 아스팔트 혼합물 슬래브를 제조하였다. 아스팔트 혼합물을 몰드에 붓기 전에 몰드 바닥에 비닐이나 그리드를 미리 깔아 보강 층으로서 만들었다. 갭(균열)이 있는 시멘트 콘크리트 위에 부착된 아스팔트 혼합물 공시체에 유압식 동적하중기를 이용하여 반복하중을 재하하였다. 반복하중에서 균열진전을 측정하여 각 처리 혼합물의 균열 지연효과를 평가하였다. 본 연구의 시험 결과로부터 특정 조합의 아스팔트 혼합물이 휨 파괴(Mode I)에 의한 반사균열 지연에 상당히 효과적인 것으로 나타났다.

  • PDF

폴리머 개질 폐타이어 아스팔트 콘크리트의 특성 연구 (Evaluation of Waste Tire Rubber Asphalt Concrete using Polymer Modified Binders)

  • 김광우;이지용;오성균
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.180-185
    • /
    • 1998
  • The study was conducted to evaluate the fundamental properties of waste tire asphalt concretes using polymer modified hinder that were made by dry process. The specimens of four types of polymer modified asphalt concretes were prepared, then Marshall test and indirect tensile strength tests were performed on these samples. The results showed that polymer modified waste tire rubber asphalt concrete was acceptable for the material of asphalt pavement surface layer.

  • PDF

일반국도의 가열 재활용 아스팔트 포장 공용수명 분석 연구 (A Study on Analysis of Performance Life for Hot Recycled Asphalt Pavements in the National Highway)

  • 이강훈
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.117-129
    • /
    • 2017
  • PURPOSES : The purpose of this study is to analyze the performance life of hot central plant recycling (HCPR) and hot in-place recycling (HIR) pavements applied to the National Highway for the past 20 years and compare it with conventional hot-mix asphalt (HMA) pavement. METHODS : In order to analyze the performance life of recycling asphalt pavements, a comprehensive literature review was conducted to investigate the government law and official system for the use of recycling asphalt pavement in Korea and foreign countries. Next, the application information of using a hot central plant recycling and hot in-place recycling pavements in the national highway is collected from the database of pavement management system (PMS) and then their field condition is visually surveyed. Finally, the performance life of recycling asphalt pavements in the national highway is analyzed and compared with conventional hot-mix asphalt pavement. RESULTS :Institutions are encouraging the promotion of using recycled asphalt pavement through various legal systems in Korea as well as abroad. Based on analysis results for the average performance life of hot central plant recycling pavement applied to the national highway, the average performance life is estimated to be 10.2 years. However, the average performance life of in-place recycling pavement is estimated to be 6.5 years. However, it is expected to increase performance life after the HIR construction system is modified. CONCLUSIONS : Based on the limited data analysis of the performance life of recycled asphalt pavements, HCPR shows similar performance life to conventional asphalt pavement but HIR shows shorter performance life than conventional asphalt pavement. However, it is noted that all performance life data is very limited and it should be monitored and analyzed further.

하모니 검색 알고리즘을 이용한 피로균열의 포장설계 및 유지보수 시기 결정 (Analyzing the Fatigue Cracking and Maintenance of Asphalt Concrete Pavements, Based on Harmony Search Algorithm)

  • 이상염;문성호
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.115-120
    • /
    • 2014
  • PURPOSES : This research describes how to predict the life cycles of fatigue cracking based on NCHRP Report 704 as well as modified harmony search (MHS) algorithm. METHODS : The fatigue cracking regression model of NCHRP Report 704 was used in order to calculate the ESAL (Equivalent Single Axle Load) numbers up to pavement failure, based on using material parameters, composite modulus, and surface pavement thickness. Furthermore, the MHS algorithm was implemented to find appropriate material parameters and other structural conditions given the number of ESALs, which is related to pavement service life. RESULTS : The case studies show that the material and structural parameters can be obtained, resulting in satisfying the failure endurance of asphalt concrete structure, given the number of ESALs. For example, the required ESALs such as one or two millions are targeted to satisfy the service performance of asphalt concrete pavements in this study. CONCLUSIONS : According to the case studies, It can be concluded that the MHS algorithm provides a good tool of optimization problems in terms of minimizing the difference between the required service cycles, which is a given value, and the calculated service cycles, which is obtained from the fatigue cracking regression model.

고품위화 정제공정 부산물(SDAR) 활용을 위한 첨가제 개발 및 이를 이용한 아스팔트 혼합물의 실내 공용성능 평가 (Development of Additive to Modify the SDAR (Solvent DeAsphalting Residue) and Laboratory Performance Evaluation of Asphalt Mixture with Modified SDAR)

  • 백철민;양성린;황성도
    • 한국도로학회논문집
    • /
    • 제18권6호
    • /
    • pp.97-104
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS : The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheel-tracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the anti-stripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS : The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.

MN/Road 시험포장 구간내의 공기량 측정 및 결과값 분석을 통한 RAP 및 저온 아스팔트(WMA) 혼합물의 특성 평가 (Performance Evaluation of RAP and WMA Mixtures Located in MN/Road Test Cells through Air Voids Analyses)

  • 문기훈;;정진훈
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.63-74
    • /
    • 2014
  • PURPOSES: This research is to evaluate the mechanical performance of different types of Hot Mix Asphalt (HMA) pavement cells prepared for MN/Road field testing section through an extensive experimental analysis of air voids and simple statistical evaluation tools (i.e. hypothesis test). METHODS: An extensive experimental work was performed to measure air voids in 82 asphalt mixture cores (238 samples in total) obtained from nine different types of road cell located in MN/Road testing field. In order to numerically and quantitatively address the differences in air voids among the different test Cells built in MN/Road, a simple statistical test method (i.e. t-test) with 5% significance was used. RESULTS: Similar trends in air voids content were found among the mixtures including conventional HMA, Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) combined with taconite aggregate this provides support to the use of RAP and WMA technology in the constructions of asphalt pavement. However, in case of acid modified HMA mixtures, significant differences in air void content were observed between on the wheel path and between wheel path location, which implies negative performances in rutting and thermal cracking resistances. Conclusions : It can be concluded that use of RAP and WMA technology in the construction of conventional asphalt pavement and the use of PPA (Poly Phosphoric Acid) in combinations with SBS (Styrene Butadiene Styrene) in asphalt binder production provide satisfactory performance and, therefore, are highly recommended.

반강성 포장용 개립도 아스팔트 재료의 성능평가 (Mechanical Properties of an Open Graded Asphalt for Semi-rigid Pavement)

  • 방진욱;김윤용
    • 한국건설순환자원학회논문집
    • /
    • 제4권1호
    • /
    • pp.68-75
    • /
    • 2016
  • 본 연구에서는 반강성포장용 개립도 아스팔트 혼합물의 배합조건을 결정하기 위한 실험적 연구를 수행하였다. 두 종류의 아스팔트 및 함량에 따른 총 12가지의 기본배합을 설정하였고, 국내 KS 기준에 따라 마샬안정도, 공극률 및 투수계수, 칸타브로 시험을 수행하였다. 시험결과로부터 다음과 같은 결론을 얻었다. 마샬안정도는 스트레이트 아스팔트와 개질 아스팔트의 함량이 각각 5.0% 및 5.5%까지는 증가하였으나 함량이 더 높아질 경우에는 증가량이 미미하거나 감소되는 경향을 나타내었다. 공극량의 경우 아스팔트 함량 증가에 따라 감소되고 투수계수도 감소되는 경향을 나타내었는데 상관계수가 86% 수준으로 평가되었다. 칸타브로 손실률 평가 결과 아스팔트 함량이 3.5%에서 6.0%로 증가될수록 감소되었고 개질 아스팔트는 스트레이트 아스팔트에 비해 손실률을 18.8%~33.1% 감소시킬 수 있었다. 국내 규정에서 제시하는 품질기준과 시험 결과를 종합해 볼 때 개질 아스팔트 함량 4.5%가 모체 개립도 아스팔트 제조에 유효한 배합으로 평가되었다.

다양한 개질 아스팔트 시멘트와 혼합물의 실험적 공용 특성 평가에 관한 연구 (A Study on Laboratory Performance Characteristics of Modified Asphalt Cements and Mixtures)

  • 김낙석;임정순;박현식;이종만
    • 한국재난정보학회 논문집
    • /
    • 제3권1호
    • /
    • pp.21-35
    • /
    • 2007
  • The principal objective of this research is to evaluate the laboratory mechanical characteristics of color asphalt binders and mixtures. The dynamic shear rheometer (DSR) tests were performed to analyze the viscous and elastic behavior of asphalt binders. Various tests were also conducted to investigate the laboratory performance characteristics of color asphalt mixtures. The test results revealed that the values of $G^*$ and ${\delta}$ of modified color binders were higher than those of the conventional binders at low temperatures. These results are expected to increase the thermal cracking resistance of asphalt mixtures at low temperatures. It should be noted that the color asphalt mixtures with modified asphalt binder can be widely used as a common pavement material with a proper mix design.

  • PDF

폴리우레탄 개질 아스팔트 바인더를 사용한 포트홀 응급 보수재의 성능평가 (Evaluation of Emergency Pothole Repair Materials using Polyurethane-Modified Asphalt Binder)

  • 김영민;임정혁;황성도
    • 한국도로학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2015
  • PURPOSES : The objective of this study is to develop new pothole repair materials using polyurethane-modified asphalt binder, and to evaluate them relative to current pothole repair materials in order to improve the performance of repaired asphalt pavement. METHODS : In the laboratory, polyurethane-modified asphalt binder is developed, and then asphalt binder is added to produce pothole repair materials. In order to evaluate the properties of this new pothole repair material, both an indirect tension strength test and a direct tension strength test are performed to measure the material strength and bond strength, respectively. Additionally, the basic material properties are evaluated using the asphalt cold mix manual. The strength characteristics based on curing times are evaluated using a total of 7 types of materials (3 types of current materials, 2 types of new materials, and 2 types of moisture conditioned new materials). The indirect tension strength tests are conducted at 1, 2, 4, 8, 16, and 32 days of curing time. The bond strength between current HMA(Hot Mix Asphalt) and the new materials is evaluated by the direct tension strength test. RESULTS AND CONCLUSIONS : Overall, the new materials show better properties than current materials. Based on the test results, the new materials demonstrate less susceptibility to moisture, faster curing times, and an improved bond strength between HMA and the new materials. Therefore, the use of the new materials reported in this study may lead to enhanced performance of repairs made to asphalt pavement potholes.