• Title/Summary/Keyword: modified asphalt

Search Result 194, Processing Time 0.018 seconds

Evaluation of Adhesiveness with Current Flow Time in the Indirect Heating of an Asphalt Pad using Joule Heating (줄 히팅을 이용한 아스팔트패드 간접가열에 있어서 통전시간별 융착성 평가)

  • Bae, Ki-Man;Choi, Han-Suk;Oh, Bo-Ra-Mi;Baek, Jong-Jin;Park, Seong-Hwan;Kang, Myungchang;Lee, Jae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.104-109
    • /
    • 2020
  • Recently, vibration and noise have become an important issue in the auto industry. Asphalt vibration damping pads are used to reduce the noise and vibration of automobile bodies, and asphalt is used for many mass-produced parts due to its simple attachment process and low processing costs. In this study, the self-adhesion of asphalt pads using Joule heating was evaluated. To create the asphalt pad for the experiment, the asphalt pad was molded into a specific thickness by using SGACC material and rubber used in the vehicle body as a main component and a modified resin and filler. The SGACC material was 200 mm in length, 200 mm in width, and 0.7 mm in thickness. The asphalt pad was 200 mm in length, 100 mm in width, and 3 mm in thickness. The equipment was composed of a TR (Transformer) DC254kVA and a TC (Time controller) for a current of up to 20,000 A. The current for the Joule heating was set to 7.0 kA and a 3/1 cycle, for which the adhesion of the asphalt pad over the current flow time was evaluated.

Evaluation of Pyrolysis Carbon Black Modified Asphalt Binder for Fatigue and Low Temperature Crack (열분해 카본블랙을 이용한 아스팔트 바인더의 피로 및 저온 성능 평가)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2511-2515
    • /
    • 2013
  • Carbon black from pyrolysis of waste tires was used to modify and improve the fatigue properties and low temperature cracking of asphalt binder. 0%, 5%, 10%, 15% and 20% of pyrolyzed carbon black was mixed. Couple of laboratory tests, such as dynamic shear rheometer test and bending beam rheometer test, were carried out. The use of pyrolyzed carbon black decreased the fatigue at room temperature and improved the resistance of low temperature cracking up to $-12^{\circ}C$, but, was off the criteria at $-18^{\circ}C$.

Development of Multi Layered Elastic Pavement Analysis Program Package Considering Temperature Nonlinearty of Asphalt Layer on GUI Environment (아스팔트층 온도 비선형성을 고려한 사용자 편의환경의 다층탄성 프로그램 개발)

  • Choi, Jun-Seong;Seo, Joo-Won;Park, Keun-Bo;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.91-101
    • /
    • 2008
  • A multi layered elastic analysis program, IDYSPAP, was developed. The objective of this study was to develop the IDYSPAP program on Graphic User Interface environment for field engineers using Visual Basic, which was considered span of multi-wheels and maximum 4 axles using superposition of linear elastic theorem. It is suggested that this study considers algorithm with dynamic properties of asphalt layer on various temperature and non-linear properties of subbase and subgrade on stress non-linearity for asphalt pavement structure. This Program was modified to divide asphalt layer automatically according to layer division concept. The developed program was verified with initial measuring data in test road sections of KEC (Korea Expressway Co.) using laboratory test results.

  • PDF

An Experimental Study on Fine Dust Emissions near Special Modified Asphalt Pavement and Conventional Asphalt Pavement (특수개질 및 일반 아스팔트 포장체 도로변의 미세먼지 발생에 대한 실험적 연구)

  • Tae-Woo Kang;Hyeok-Jung Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.282-288
    • /
    • 2023
  • In this study, we analyzed the amount of roadside fine dust generated from newly constructed specially modified asphalt pavement and general asphalt pavement from existing roads. We collected the 1,000 g (100 g/day) of dust samples from the roadside of the express bus terminal and commercial facility area in Chungcheongnam-do's C site at three-day intervals during the summer of 2022 and 2023. The collected samples were separated from fine dust according to size in the 75-150 ㎛ range and, were separated only from Tire and Road Wear Particles through density separation. No.1-3 are general asphalt pavement section as an existing road. Fine dust and Tire and Road Wear Particles in No.1-3 were 24.27 g, 24.36 g, 0.53 g, and 0.53 g, respectively, and the quantitative results for 2022 and 2023 were similar. On the other hand, No.4-6 are newly constructed specially modified asphalt pavement section. Fine dust decreased by 14.8 % and tire and road wear particles decreased by 29.6 % in 2023 compared to 2022 in No.4-6. In addition, according to the results of thermogravimetric analysis, Tire and road wear particles in No.1-3 are tire and road components at 30 % and 70 %, respectively. And Tire and road wear particles in No.4-6 are tire and road components at 35 % and 65 % in 2023, respectively. From these results, it was confirmed that the newly constructed specially modified asphalt pavement can be effective in reducing roadside fine dust and Tire and Road Wear Particles. However, there may be some shortcomings in conclusive research results due to limited space and sample collection period. In the future, we plan to conduct various case studies.

Performance Evaluation of Dense Graded Asphalt Mixture Modfied by Pyrolysis Carbon Black (열분해 카본블랙 사용량에 따른 밀입도 아스팔트 혼합물 성능 평가)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.732-737
    • /
    • 2016
  • Using the pyrolyzed carbon black (PCB) from waste tires, the performance of 13 mm dense-graded hot mix asphalt was evaluated. The Marshall mix design was carried out and the measured optimal asphalt content was 5.8%. The impact resonant test was conducted to obtain the elastic modulus and damping ratio of the hot mix asphalt. The elastic modulus of HMA increased with increasing amount of PCB. On the other hand, there was no significant change in the damping ratio. The Marshall mix design, indirect tensile test, permanent deformation test, and program analysis were carried out. The strength ratio of the PCB modified asphalt mixtures was within 10%. More 10% of PCB was not good for the permanent deformation of hot mix asphalt. From the pavement design program, the use of 5% PCB in hot mix asphalt showed a decrease in the top-down crack, bottom-up crack, and permanent deformation. Judging from the limited test and analysis, the use of 5% PCB is good for enhancing the pavement performance.