• Title/Summary/Keyword: modified PET

Search Result 90, Processing Time 0.064 seconds

A Study on Polypropylene and Surface Modified PET Fiber Composites (표면처리된 PET 섬유와 PP 복합재료에 관한 연구)

  • Hahm, Moon-Seok;Kim, Chang-Hyeon;Ryu, Ju-Whan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • We confirmed that poly (ethylene terephthalate) (PET) fiber had the possibility to improve the mechanical properties of polypropylene (PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and Prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

Polymer Surfaces for Cell Adhesion II. Cell Culture on Surface-modified Polymers (세포적합성 고분자 표면에 관한 연구 II. 표면 개질된 고분자에의 세포 배양)

  • 이진호;강길선
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.195-202
    • /
    • 1989
  • Chinese Hamster Ovary( CHO) cells were cultured on the surface-modified polymers described in the previous study( "Polymer Surfaces for Cell Adhesion. 1. Surface Modification of Polymers and ESCA Analysis, " J. of KOSOMBE, Vol. 10, No. 1, 43-51, 1989). Among the physicochemical treatment methods. the chloric acid treatment was found to be the best method of rendering the polymer surfaces adhesive for CHO cells probably due to the high density of hydroxyl groups on the surface. Among the biological methods, the fibronectin treatment was best for CHO cell-compatibility probably due to specific active sites existed on the tell-binding domains of the fibronectin structure. When we compare the cell-compatibility of the chloric acid - and the fibronectin -treated PET surfaces, the number of cells attached on the surfaces were increased by 460.5 % and 559.0 % and, respectively, after 32 hr CHO cell culture, compared to that of untreated PET.eated PET.

  • PDF

Study on The Characteristics of UV Modified PET Surface and Effects in an Electroless Plating Solution (UV 전처리 후 PET 표면의 성질과 무전해 구리 도금액 내에서의 영향에 관한 연구)

  • Lee, Geon-Hyeong;Lee, Hong-Gi;Heo, Jin-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.176-177
    • /
    • 2015
  • 본 실험에서 PET 위 무전해 구리 도금을 위한 전처리 방법 중 하나인 UV 조사를 통해 전처리를 한 후 PET 표면의 특성과 염기성 무전해 도금액이 개질된 표면에 미치는 영향에 관한 연구를 하였다. 일반적으로 PET 표면을 개질시키기 위해 UVC(254nm) 파장을 이용하여 PET bond break (Chain Scission)을 이루는 것으로 알려진다. 이때 공기 중의 산소와 UV 조사를 통해 생성된 PET 내의 free radical과 산화 반응을 통해 친수성이 높은 표면을 형성하게 된다. PET 표면의 친수성을 측정하기 위해 접촉각 측정기가 사용되었으며, 표면의 거칠기 및 형상을 관찰하기 위해 AFM과 FE-SEM를 각각 이용하였다. 또한 PET 표면의 구조 변화는 XPS를 통해 분석을 진행 하였다. UV 조사 후 표면의 거칠기 및 친수성은 높아졌지만, 무전해 도금은 이루어지지 않았다. 분석 결과, 이는 표면에 형성된 Low Molecular Weight Oxidation Compound(LMWOC)가 염기성 수용액 내에서 용해되어 모두 씻겨 나가 표면에 형성된 Sn/Pd을 모두 떨어트린 것으로 판단되며, 위와같은 이유로 UV 조사 후 습식 공정에 적용하기 위해 표면개질 된 PET를 염기성 수용액을 통해 전처리가 필요한 것으로 사료된다.

  • PDF

The Prototype Development of Clothing for Pet Dogs (애완견 의류의 원형 개발)

  • Kim, Jung-Min;Park, Sun-Kyung
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.4
    • /
    • pp.599-611
    • /
    • 2010
  • The purpose of this study is to develop the most appropriate garment patterns for dog. This study is analyzed the body structures and bodily movements of different types of dogs and constructed garment patterns that are appropriate for each category: the basic pattern for dogs with oval-shaped chests; and the modified pattern for the ones with barrel-shaped chests. Analyzing some of the existing patterns in the market as well as studying the size chart of one of the dog apparel manufacturers, who participated in the Fashion Week for the very first time, were undertaken in order to understand the bodily figures and movements of dogs. Furthermore, based the previous studies and relevant information available regarding some of the most popular dogs in four selected countries: (names of the selected countries), dogs were broadly categorized into three groups according to the shape of their chests: Oval, Barrel, and Flat-sided. Later, two types of pattern were created and then constructed for fitting: the basic pattern for oval-shaped chest; and the modified pattern for barrel-shaped chest. As a result, the two patterns turned out to be most suitable for pet dogs.

Dyeing Study on DMF-Modified Polyesters for Morphology Characterization

  • Park, Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.5 no.2
    • /
    • pp.53-65
    • /
    • 2002
  • Morphology of polyester fiber was physically modified by solvent treatment. PET fiber was treated with N,N-dimethylformamide (DMF) at 100, 120, $140^{circ}C$ for 10 minutes without tension. The structural changes in the morphology of DMF-induced modified PET fiber were FTIR and SEM analysis. Also dyeing behavior of DMF-treated polyester fibers with various disperse dyes was studied to detect changes of amorphous area in fine structure. DMF treatment resulted in increases in total void content, degree of crystallinity, trans isomer content, chain folding, segmental mobility and molecular packing, but it resulted in decreases in amorphous orientation, intermolecular forces and individual void size through longitudinal shrinkage, lateral welling and removal of oligomers. Void-size distribution could be estimated from the dye uptake with various sizes of disperse dyes. In contrast to the large increases in dye uptake with small dye molecules, there is no and little dye uptake with the bulkiest dye, which means that void size is bigger or smaller than the volume of each dye. Diffusion rates of dye molecules showed increases. This dyeing study revealed that the disperse dyeing is very effective method for characterizing the internal morphology of polyester fiber.

  • PDF

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Analysis of Forming Processes of PET Bottle using a finite Element Method (유한요소법을 이용한 PET병의 성형 공정 해석)

  • 주성택;김용환;류민영
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

Chemical Modification and Functionalisation of Poly(ethylene terephthalate) Fiber (폴리에틸렌테레프탈레이트 섬유의 화학개질 및 기능화)

  • 김인회;김성희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.389-399
    • /
    • 2002
  • Poly (ethylene terephthalate) (PET) fibers were modified by deep UV irradiation which was produced by a low pressure mercury lamp. FT-IR and XPS analyses were used to elucidate the surface chemical composition of PET fibers treated with UV. Relative $O_{1s}$ intensity increased considerably and it was found that oxygen was incorporated in the form of COO on the fiber surface. FT-IR and XPS analyses proved the existence of carboxylic groups on the surfaces and the adsorption test of cationic compound further supported these results. The concentration of carboxylic acid group on the surface increased remarkably with Increasing irradiation time. XPS analysis and adsorption experiments proved that the surface structure of the UV-irradiated PET fibers were stable for 12 months. Antibacterial property and the deodorization rate of UV-irradiated PET fibers adsorbed with the berberine compound were investigated. Reduction rates of bacteria increased by about 21 to 99% compared to unradiated PET fiber. Deodorization rates of 23% for unradiated PET fiber increased to about 75% for 30 min irradiated samples.s.