• 제목/요약/키워드: modified NSM

검색결과 6건 처리시간 0.022초

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

규칙파에 대한 조종운동의 응답함수에 관한 고찰 (A Study on Response Functions of Manoeuvring Motion of a Ship in Regular Waves)

  • 손경호;이경우;김진형
    • 한국항해학회지
    • /
    • 제18권4호
    • /
    • pp.11-21
    • /
    • 1994
  • Final aim of this paper is a study on simulation of automatic steering of a ship in random seas. In order to achieve this aim, we need excitation due to random seas. The excitation may be estimated from energy spectrum of irregular waves and response functions of manoeuvring motion of a ship in regular waves. This paper deals with response functions of manoeuvring motion of a ship in regular waves. We discussed New Strip Method(NSM) of sway-yaw-roll coupled motions in regular waves. NSM is defined in space axes system and that has been used to predict seakeeping performance of a ship in waves. But ship manoeuvring is defined in body fixed axes system. So we cannot use NSM theory itself in predicting manoeuvring performance of a ship in waves. We introduced relationship between space axes system and body fixed axes system. And we developed modified NSM which was defined in body fixed axes system and was able to be used in manoeuvring motion of a ship in waves. We calculated sway and yaw response functions of manoeuvring motion of a bulk carrier in regular waves.

  • PDF

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

콘크리트 내에 표면매입 보강된 FRP 판의 부착강도 (Bond Strength of Near Surface-Mounted FRP Plate in RC Member)

  • 서수연
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.415-422
    • /
    • 2012
  • 이 연구에서는 FRP 부재를 이용한 표면매입 보강에서, FRP의 부착강도를 평가하기 위하여 총 78개의 기존실험 결과를 분석하고, 기존 연구자들에 의해 제안된 식들을 평가하였다. 그 결과 FRP부재의 형상계수(폭-두께비)와 강성을 반영한 Seracino의 식이 부착내력을 가장 근사하게 예측하는 것으로 나타났다. 그러나 Seracino의 식은 실험 결과를 다소 과소평가하는 양상을 보이고 특히 부착길이가 작을수록 그 경향이 두드러진 것으로 나타났다. 이는 부착길이 증가에 따른 영향이 Seracino의 식에는 전혀 반영되어있지 않기 때문으로 볼 수 있다. 기존 실험 결과의 분석을 통하여 부착길이와 강도와의 상관관계를 찾고 또한 여러 개의 FRP부재를 인접하여 배치시 발생하는 무리효과를 고려하여 Seracino 식을 수정 제안하였다. 이 제시된 식을 이용하여 기존 실험체에 대한 내력을 계산하고 평가한 결과, 제안된 식으로서 표면매입 보강된 FRP의 부착강도를 매우 근사하게 예측할 수 있는 것으로 나타났다.

개선된 중성자 선원 증배법을 이용한 미임계도 평가 (Subcriticality Evaluation Using the Modified Neutron Source Multiplication Method)

  • 윤석균;윈나잉;김명현
    • 에너지공학
    • /
    • 제16권4호
    • /
    • pp.155-163
    • /
    • 2007
  • 원자로의 안전성 확보를 위해 재장전 기간 동안 수행되는 노물리 시험에서 제어봉의 반응도가(reactivity worth) 산출을 위해 노심의 임계도를 측정해야 하고, 기동운전 시에도 반응도 사고를 대비하여 미임계도가 감시되어야 한다. 미임계도나 제어봉가 측정을 위한 연구가 국내외적으로 지속되어 왔으며, 최근에는 일본에서 "개선된 중성자 선원 증배법(Modified Neutron Source Multiplication Method, MNSM)"이 제안되어 기존의 중성자 선원 증배법의 한계를 극복하였다. 본 연구에서는 MNSM을 경희대 교육용원자로 AGN-201에 적용하여 미임계도를 계산하고 새로운 방법의 타당성을 평가하였다. MNSM의 적용을 위해 AGN-201 원자로에 적합한 핵자료집과 중성자수송 전산코드인 TRANSX - PARTISN 체계를 구축하였고, 유효증배계수와 중성자속(flux) 분포, 수반 중성자속(adjoint flux) 분포 등을 계산하여 제어봉위치에 따른 보정인자들을 산출하였다. 원자로의 미임계도 측정값은 $BF_3$ 비례계수관으로 측정한 중성자계수율을 사용하여 확보하였다. 연구 결과로서 MNSM을 사용하여 평가한 미임계도가 전산코드로 계산하여 얻어진 이론적인 미임계도 값에 근접하고 계산된 보정인자도 유효함을 확인하였다.