• Title/Summary/Keyword: modified Hummer's method

Search Result 11, Processing Time 0.024 seconds

Study on properties of eco-friendly reduction agents for the reduced graphene oxide method

  • Na, Young-il;Song, Young Il;Kim, Sun Woo;Suh, Su-Jeong
    • Carbon letters
    • /
    • v.24
    • /
    • pp.1-9
    • /
    • 2017
  • We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer's method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ${\geq}$ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of $121k{\Omega}/sq$, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.

Integration of Graphene Oxide Into PAN Nanofibers with Improved Physical Property (Graphene Oxide를 활용한 PAN 나노섬유 제조 및 물리적 특성 향상)

  • Lee, Jeonghun;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.255-262
    • /
    • 2017
  • In this study, systematic integration of graphene oxide (GO) into polyacrylonitrile (PAN) nanofibers was accomplished by electrospinning to examine their mechanical properties. Exfoliated GO was initially prepared by the modified Hummer's method, and the surface of the GO was modified with an organic surfactant (e.g., cetyltrimetylammonium chloride) to improve its stability and dispersity. The overall mechanical property of the nanofiber composite membranes was highly improved. Particularly, the composite membranes with the modified GO exhibited much improved mechanical property, presumably due to the increased stability and dispersity of GO during electrospinning.

Study on the PVdF Nanofibers and Graphene Oxide Hybrid Membrane (PVdF 나노섬유와 Graphene Oxide 하이브리드막에 관한 연구)

  • Jung, Hyemin;Chen, Weidong;Yang, Woo Seok;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • Recently, many applications with grapheneoxide (GO) have been reported. But GO membrane for water treatment has not been developed. In this study we prepared polyvinylidene difluoride (PVdF) nanofiber/GO hybrid membrane (FG) for the microfiltration application. The PVdF substrate membrane was prepared by using the electrospinning method with a solution of PVdF in N,N-dimethylacetamide (DMAc) and acetone. GO sheets used in this study were prepared by modified Hummer's method. The PVdF/GO hybrid membrane was finally prepared by spraying the GO solution dispersed in ethanol on the PVdF nanofiber. The successfully prepared FG was thoroughly examined by SEM, Raman, contact angle, porometer and UTM, and water-flux was measured with designed cell (Dead-End Cell). From the contact angle results, it was found that the surface of FG membrane was reformed by hydrophilic property and the water permeability was increased about 2.5 times than that of the nascent PVdF membrane, indicating the possible alternative of the commercial MF membrane.

Electrical and Thermal Properties of Poly(p-phenylene sulfide) Reduced Graphite Oxide Nanocomposites

  • Chae, Byung-Jae;Kim, Do Hwan;Jeong, In-Soo;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.221-225
    • /
    • 2012
  • Graphite oxide (GO) was produced using the modified Hummer's method. Poly(p-phenylene sulfide) (PPS)/reduced graphite oxide (RGO) composites were prepared by in situ polymerization method. The electrical conductivity of the PPS/RGO composites was no more than 82 S/m. It was found that as GO content increased in the PPS/RGO composites, the crystallization temperature and electrical conductivity of the composites increased and the percolation threshold value was at 5-8 wt% of GO content.

NO2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.84-91
    • /
    • 2012
  • Single and few-layer graphene nanosheets (GNs) have successfully synthesized by a modified Hummer's method followed by chemical reduction of exfoliated graphene oxide (GO) in the presence of hydrazine monohydrate. GO and GNs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Optical microscopy (OM) and by electrical conductivity measurements. The result showed that electrical conductivity of GNs was significantly improved, from $4.2{\times}10^{-4}$ S/m for GO to 12 S/m for GNs, possibly due to the removal of oxygen-containing functional group during chemical reduction. In addition, the $NO_2$ gas sensing characteristics of GNs are also discussed.

Visible-light photo-reduction of reduced graphene oxide by lanthanoid ion

  • Kim, Jinok;Yoo, Gwangwe;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.290.1-290.1
    • /
    • 2016
  • Grapehen, a single atomic layer of graphite, has been in the spotlight and researched in vaious fields, because its fine mechanical, electrical properties, flexibility and transparence. Synthesis methods for large-area graphene such as chemical vaper deposition (CVD) and mechanical, chemical exfoliation have been reported. In particular, chemical exfoliation method receive attention due to low cost process. Chemical exfoliation method require reduction of graphene oxide in the process of exfoliation such as chemical reduction by strong reductant, thermal reduction on high temperature, and optical reduction via ultraviolet light exposure. Among these reduction methods, optical reduction is free from damage by strong reductant and high temperature. However, optical reduction is economically infeasible because the high cost of short-wavelength ultraviolet light sorce. In this paper, we make graphene-oxide and lanthanoid ion mixture aqueous solution which has highly optical absorbency in selective wevelength region. Sequentially, we synthesize reduced graphene oxide (RGO) using the solution and visible laser beam. Concretely, graphene oxide is made by modified hummer's method and mix with 1 ml each ultraviolet ray absorbent Gd3+ ion, Green laser absorbent Tb3+ ion, Red laser absorbent Eu3+ ion. After that, we revivify graphene oxide by laser exposure of 300 ~ 800 nm layser 1mW/cm2 +. We demonstrate reproducibility and repeatability of RGO through FT-IR, UV-VIS, Low temperature PL, SEM, XPS and electrical measurement.

  • PDF

Preparation of sulfonated reduced graphene oxide by radiation-induced chemical reduction of sulfonated graphene oxide

  • Jung, Chang-Hee;Hong, Ji-Hyun;Jung, Jin-Mook;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • We report the preparation of sulfonated reduced graphene oxide (SRGO) by the sulfonation of graphene oxide followed by radiation-induced chemical reduction. Graphene oxide prepared by the well-known modified Hummer's method was sulfonated with the aryl diazonium salt of sulfanilic acid. Sulfonated graphene oxide (SGO) dispersed in ethanol was subsequently reduced by ${\gamma}$-ray irradiation at various absorbed doses to produce SRGO. The results of optical, chemical, and thermal analyses revealed that SRGO was successfully prepared by ${\gamma}$-ray irradiation-induced chemical reduction of the SGO suspension. Moreover, the electrical conductivity of SRGO was increased up to 2.94 S/cm with an increase of the absorbed dose.

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells

  • Rodriguez-Perez, Manuel;Villanueva-Cab, Julio;Pal, Umapada
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.231-244
    • /
    • 2017
  • Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.

Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara;Hussain, Imad;Riyazuddin, Riyazuddin;Koo, Bon Heun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.411-417
    • /
    • 2019
  • Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.

란타넘족 이온을 이용한 가시광선 대역에서의 산화그래핀 광환원

  • O, Ae-Ri;Yu, Gwang-Wi;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.202.1-202.1
    • /
    • 2015
  • 탄소의 $sp^2$ 혼성으로 이루어진 2차원 단일시트(two-dimensional single sheet)인 그래핀은 기계적, 열역학적, 전기적 특성이 매우 우수하며 특히 고유연성과 투명성을 가진다는 장점 때문에 오랜 기간 주목 받으며 다양한 분야에서 연구되어 왔다. 이러한 그래핀을 만드는 방법에는 화학적 증기 증착법 및 흑연으로부터의 물리적, 화학적 박리 방법이 있다. 양질의 그래핀을 대면적에서 획득 할 수 있는 화학적 증기 증착법의 경우 높은 공정 비용과 함께 수반되어야 하는 전사과정의 어려움으로 인하여 실제 상용화에 어려움이 있다. 이러한 단점의 극복을 위해 대량의 그래핀을 저렴하게 확보 할 수 있는 화학적 박리 방법이 주목을 받고 있다. 화학적 박리 방법의 경우 박리 과정에서 수반되는 산화 그래핀의 환원과정이 필요하였으며, 이를 위해 강력한 환원제를 이용한 화학적 환원 방법, 고온에서의 열처리를 이용한 열역학적 환원 방법, 및 빛을 노광시켜 산화 그래핀을 환원시키는 광학적 방법이 시도되었다. 화학적 및 열역학적 환원방법의 경우 고품질의 환원된 산화 그래핀을 획득 할 수 있으나, 강한 환원제 및 높은 열처리 온도로 인하여 유연 기판의 사용이 제한되는 단점이 있다. 이러한 단점을 극복하기 위해 빛을 이용한 광학적 방법이 제시되었으나, 환원과정에 사용되는 단파장의 자외선 광원의 높은 가격으로 인하여 경제성의 확보가 제한된다. 본 논문에서는 우수한 광학적 특성을 보이는 란타넘족 이온을 사용하여 선택적 파장 대에서 높은 광흡수도를 가지는 산화 그래핀-란타넘 이온 혼합용액을 만들었으며, 가시광선대역의 파장을 가지는 레이저를 사용하여 우수한 품질을 가지는 환원된 산화 그래핀을 제작하였다. 구체적으로 산화 그래핀은 modified hummer's method를 이용하여 만들어졌으며, 자외선 대역을 흡수하는 $Gd_{3+}$, 녹색 레이저를 흡수하는 $Tb_{3+}$, 적색 레이저를 흡수하는 $Eu^{3+}$를 1 mM 섞어주었다. 그 후, 300~800 nm의 파장을 가지는 레이저를 $1mW/cm^2$를 노광시켜 산화 그래핀을 환원시켰다. 환원된 산화 그래핀의 특성은 FT-IR, UV-Vis, 저온 PL, SEM, XPS 및 전기측정을 이용해 측정하여 재현성 및 반복성을 확인하였다.

  • PDF